On $(a,b,c,d)$-orthogonality in normed linear spaces
Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 1-10.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We first introduce a notion of $(a,b,c,d)$-orthogonality in a normed linear space, which is a natural generalization of the classical isosceles and Pythagorean orthogonalities, and well known $\alpha $- and $(\alpha ,\beta )$-orthogonalities. Then we characterize inner product spaces in several ways, among others, in terms of one orthogonality implying another orthogonality.
DOI : 10.4064/cm103-1-1
Keywords: first introduce notion d orthogonality normed linear space which natural generalization classical isosceles pythagorean orthogonalities known alpha alpha beta orthogonalities characterize inner product spaces several ways among others terms orthogonality implying another orthogonality

C.-S. Lin 1

1 Department of Mathematics Bishop's University Lennoxville, Quebec Canada J1M 1Z7
@article{10_4064_cm103_1_1,
     author = {C.-S. Lin},
     title = {On $(a,b,c,d)$-orthogonality in normed linear spaces},
     journal = {Colloquium Mathematicum},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2005},
     doi = {10.4064/cm103-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-1/}
}
TY  - JOUR
AU  - C.-S. Lin
TI  - On $(a,b,c,d)$-orthogonality in normed linear spaces
JO  - Colloquium Mathematicum
PY  - 2005
SP  - 1
EP  - 10
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-1/
DO  - 10.4064/cm103-1-1
LA  - en
ID  - 10_4064_cm103_1_1
ER  - 
%0 Journal Article
%A C.-S. Lin
%T On $(a,b,c,d)$-orthogonality in normed linear spaces
%J Colloquium Mathematicum
%D 2005
%P 1-10
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-1/
%R 10.4064/cm103-1-1
%G en
%F 10_4064_cm103_1_1
C.-S. Lin. On $(a,b,c,d)$-orthogonality in normed linear spaces. Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 1-10. doi : 10.4064/cm103-1-1. http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-1/

Cité par Sources :