On sets which contain a $q$th power residue for
almost all prime modules
Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 67-71
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A classical theorem of M. Fried \cite{fri}
asserts that if non-zero integers
$\beta_1,\ldots,\beta_l$ have the property that for
each prime number $p$ there exists a quadratic
residue $\beta_j$ mod $p$ then a certain product
of an odd number of them is a square.
We provide generalizations for power residues of degree $n$ in two
cases: 1) $n$ is a prime, 2) $n$ is a power of an odd prime.
The proofs involve some combinatorial properties of finite Abelian
groups and arithmetic results of \cite{schiska}.
Keywords:
classical theorem fried cite fri asserts non zero integers beta ldots beta have property each prime number there exists quadratic residue beta mod certain product odd number square provide generalizations power residues degree cases prime power odd prime proofs involve combinatorial properties finite abelian groups arithmetic results cite schiska
Affiliations des auteurs :
Mariusz Ska/lba 1
@article{10_4064_cm102_1_6,
author = {Mariusz Ska/lba},
title = {On sets which contain a $q$th power residue for
almost all prime modules},
journal = {Colloquium Mathematicum},
pages = {67--71},
publisher = {mathdoc},
volume = {102},
number = {1},
year = {2005},
doi = {10.4064/cm102-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-6/}
}
TY - JOUR AU - Mariusz Ska/lba TI - On sets which contain a $q$th power residue for almost all prime modules JO - Colloquium Mathematicum PY - 2005 SP - 67 EP - 71 VL - 102 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-6/ DO - 10.4064/cm102-1-6 LA - en ID - 10_4064_cm102_1_6 ER -
Mariusz Ska/lba. On sets which contain a $q$th power residue for almost all prime modules. Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 67-71. doi: 10.4064/cm102-1-6
Cité par Sources :