On sets which contain a $q$th power residue for almost all prime modules
Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 67-71.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A classical theorem of M. Fried \cite{fri} asserts that if non-zero integers $\beta_1,\ldots,\beta_l$ have the property that for each prime number $p$ there exists a quadratic residue $\beta_j$ mod $p$ then a certain product of an odd number of them is a square. We provide generalizations for power residues of degree $n$ in two cases: 1) $n$ is a prime, 2) $n$ is a power of an odd prime. The proofs involve some combinatorial properties of finite Abelian groups and arithmetic results of \cite{schiska}.
DOI : 10.4064/cm102-1-6
Keywords: classical theorem fried cite fri asserts non zero integers beta ldots beta have property each prime number there exists quadratic residue beta mod certain product odd number square provide generalizations power residues degree cases prime power odd prime proofs involve combinatorial properties finite abelian groups arithmetic results cite schiska

Mariusz Ska/lba 1

1 Institute of Mathematics Polish Academy of Sciences P.O. Box 21 00-956 Warszawa, Poland
@article{10_4064_cm102_1_6,
     author = {Mariusz Ska/lba},
     title = {On sets which contain a $q$th power residue for
 almost all prime modules},
     journal = {Colloquium Mathematicum},
     pages = {67--71},
     publisher = {mathdoc},
     volume = {102},
     number = {1},
     year = {2005},
     doi = {10.4064/cm102-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-6/}
}
TY  - JOUR
AU  - Mariusz Ska/lba
TI  - On sets which contain a $q$th power residue for
 almost all prime modules
JO  - Colloquium Mathematicum
PY  - 2005
SP  - 67
EP  - 71
VL  - 102
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-6/
DO  - 10.4064/cm102-1-6
LA  - en
ID  - 10_4064_cm102_1_6
ER  - 
%0 Journal Article
%A Mariusz Ska/lba
%T On sets which contain a $q$th power residue for
 almost all prime modules
%J Colloquium Mathematicum
%D 2005
%P 67-71
%V 102
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-6/
%R 10.4064/cm102-1-6
%G en
%F 10_4064_cm102_1_6
Mariusz Ska/lba. On sets which contain a $q$th power residue for
 almost all prime modules. Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 67-71. doi : 10.4064/cm102-1-6. http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-6/

Cité par Sources :