Partly dissipative systems in uniformly local spaces
Colloquium Mathematicum, Tome 100 (2004) no. 2, pp. 221-242
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the existence of attractors for partly dissipative systems in ${\mathbb R}^n$. For these systems we prove the existence of global attractors with attraction properties and compactness in a slightly weaker topology than the topology of the phase space. We obtain abstract results extending the usual theory to encompass such two-topologies attractors. These results are applied to the FitzHugh–Nagumo equations in ${\mathbb R}^n$ and to Field–Noyes equations in ${\mathbb R}$. Some embeddings between uniformly local spaces are also proved.
Keywords:
study existence attractors partly dissipative systems mathbb these systems prove existence global attractors attraction properties compactness slightly weaker topology topology phase space obtain abstract results extending usual theory encompass two topologies attractors these results applied fitzhugh nagumo equations mathbb field noyes equations mathbb embeddings between uniformly local spaces proved
Affiliations des auteurs :
Alexandre N. Carvalho 1 ; Tomasz Dlotko 2
@article{10_4064_cm100_2_6,
author = {Alexandre N. Carvalho and Tomasz Dlotko},
title = {Partly dissipative systems in uniformly local spaces},
journal = {Colloquium Mathematicum},
pages = {221--242},
publisher = {mathdoc},
volume = {100},
number = {2},
year = {2004},
doi = {10.4064/cm100-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-6/}
}
TY - JOUR AU - Alexandre N. Carvalho AU - Tomasz Dlotko TI - Partly dissipative systems in uniformly local spaces JO - Colloquium Mathematicum PY - 2004 SP - 221 EP - 242 VL - 100 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-6/ DO - 10.4064/cm100-2-6 LA - en ID - 10_4064_cm100_2_6 ER -
Alexandre N. Carvalho; Tomasz Dlotko. Partly dissipative systems in uniformly local spaces. Colloquium Mathematicum, Tome 100 (2004) no. 2, pp. 221-242. doi: 10.4064/cm100-2-6
Cité par Sources :