The solution of the Tame Generators Conjecture according to Shestakov and Umirbaev
Colloquium Mathematicum, Tome 100 (2004) no. 2, pp. 181-194.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The tame generators problem asked if every invertible polynomial map is tame, i.e. a finite composition of so-called elementary maps. Recently in [8] it was shown that the classical Nagata automorphism in dimension 3 is not tame. The proof is long and very technical. The aim of this paper is to present the main ideas of that proof.
DOI : 10.4064/cm100-2-3
Keywords: tame generators problem asked every invertible polynomial map tame finite composition so called elementary maps recently shown classical nagata automorphism dimension tame proof long technical paper present main ideas proof

Arno van den Essen 1

1 Department of Mathematics Postbus 9010 6500 GL Nijmegen The Netherlands
@article{10_4064_cm100_2_3,
     author = {Arno van den Essen},
     title = {The solution of the {Tame} {Generators
} {Conjecture} according to {Shestakov} and {Umirbaev}},
     journal = {Colloquium Mathematicum},
     pages = {181--194},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {2004},
     doi = {10.4064/cm100-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-3/}
}
TY  - JOUR
AU  - Arno van den Essen
TI  - The solution of the Tame Generators
 Conjecture according to Shestakov and Umirbaev
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 181
EP  - 194
VL  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-3/
DO  - 10.4064/cm100-2-3
LA  - en
ID  - 10_4064_cm100_2_3
ER  - 
%0 Journal Article
%A Arno van den Essen
%T The solution of the Tame Generators
 Conjecture according to Shestakov and Umirbaev
%J Colloquium Mathematicum
%D 2004
%P 181-194
%V 100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-3/
%R 10.4064/cm100-2-3
%G en
%F 10_4064_cm100_2_3
Arno van den Essen. The solution of the Tame Generators
 Conjecture according to Shestakov and Umirbaev. Colloquium Mathematicum, Tome 100 (2004) no. 2, pp. 181-194. doi : 10.4064/cm100-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-3/

Cité par Sources :