On the number of nonquadratic residues
which are not primitive roots
Colloquium Mathematicum, Tome 100 (2004) no. 1, pp. 91-93
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that there exist infinitely many positive integers $r$ not of the form $(p-1)/2-\phi (p-1)$, thus providing an affirmative answer to a question of Neville Robbins.
Keywords:
there exist infinitely many positive integers form p phi p providing affirmative answer question neville robbins
Affiliations des auteurs :
Florian Luca 1 ; P. G. Walsh 2
@article{10_4064_cm100_1_8,
author = {Florian Luca and P. G. Walsh},
title = {On the number of nonquadratic residues
which are not primitive roots},
journal = {Colloquium Mathematicum},
pages = {91--93},
publisher = {mathdoc},
volume = {100},
number = {1},
year = {2004},
doi = {10.4064/cm100-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm100-1-8/}
}
TY - JOUR AU - Florian Luca AU - P. G. Walsh TI - On the number of nonquadratic residues which are not primitive roots JO - Colloquium Mathematicum PY - 2004 SP - 91 EP - 93 VL - 100 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm100-1-8/ DO - 10.4064/cm100-1-8 LA - en ID - 10_4064_cm100_1_8 ER -
Florian Luca; P. G. Walsh. On the number of nonquadratic residues which are not primitive roots. Colloquium Mathematicum, Tome 100 (2004) no. 1, pp. 91-93. doi: 10.4064/cm100-1-8
Cité par Sources :