Representation theory of two-dimensionalbrauer graph rings
Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 239-251
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider a class of two-dimensional non-commutative Cohen-Macaulay rings to which a Brauer graph, that is, a finite graph endowed with a cyclic ordering of edges at any vertex, can be associated in a natural way. Some orders Λ over a two-dimensional regular local ring are of this type. They arise, e.g., as certain blocks of Hecke algebras over the completion of $ℤ[q,q^{-1}]$ at (p,q-1) for some rational prime $p$. For such orders Λ, a class of indecomposable maximal Cohen-Macaulay modules (see introduction) has been determined by K. W. Roggenkamp. We prove that this list of indecomposables of Λ is complete.
Keywords:
Brauer graph, order, Cohen-Macaulay, Auslander-Reiten quiver
Affiliations des auteurs :
Wolfgang Rump 1
@article{10_4064_cm_86_2_239_251,
author = {Wolfgang Rump},
title = {Representation theory of two-dimensionalbrauer graph rings},
journal = {Colloquium Mathematicum},
pages = {239--251},
publisher = {mathdoc},
volume = {86},
number = {2},
year = {2000},
doi = {10.4064/cm-86-2-239-251},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-239-251/}
}
TY - JOUR AU - Wolfgang Rump TI - Representation theory of two-dimensionalbrauer graph rings JO - Colloquium Mathematicum PY - 2000 SP - 239 EP - 251 VL - 86 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-239-251/ DO - 10.4064/cm-86-2-239-251 LA - en ID - 10_4064_cm_86_2_239_251 ER -
Wolfgang Rump. Representation theory of two-dimensionalbrauer graph rings. Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 239-251. doi: 10.4064/cm-86-2-239-251
Cité par Sources :