Representation theory of two-dimensionalbrauer graph rings
Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 239-251.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider a class of two-dimensional non-commutative Cohen-Macaulay rings to which a Brauer graph, that is, a finite graph endowed with a cyclic ordering of edges at any vertex, can be associated in a natural way. Some orders Λ over a two-dimensional regular local ring are of this type. They arise, e.g., as certain blocks of Hecke algebras over the completion of $ℤ[q,q^{-1}]$ at (p,q-1) for some rational prime $p$. For such orders Λ, a class of indecomposable maximal Cohen-Macaulay modules (see introduction) has been determined by K. W. Roggenkamp. We prove that this list of indecomposables of Λ is complete.
DOI : 10.4064/cm-86-2-239-251
Keywords: Brauer graph, order, Cohen-Macaulay, Auslander-Reiten quiver

Wolfgang Rump 1

1
@article{10_4064_cm_86_2_239_251,
     author = {Wolfgang Rump},
     title = {Representation theory of two-dimensionalbrauer graph rings},
     journal = {Colloquium Mathematicum},
     pages = {239--251},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-86-2-239-251},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-239-251/}
}
TY  - JOUR
AU  - Wolfgang Rump
TI  - Representation theory of two-dimensionalbrauer graph rings
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 239
EP  - 251
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-239-251/
DO  - 10.4064/cm-86-2-239-251
LA  - en
ID  - 10_4064_cm_86_2_239_251
ER  - 
%0 Journal Article
%A Wolfgang Rump
%T Representation theory of two-dimensionalbrauer graph rings
%J Colloquium Mathematicum
%D 2000
%P 239-251
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-239-251/
%R 10.4064/cm-86-2-239-251
%G en
%F 10_4064_cm_86_2_239_251
Wolfgang Rump. Representation theory of two-dimensionalbrauer graph rings. Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 239-251. doi : 10.4064/cm-86-2-239-251. http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-239-251/

Cité par Sources :