Some spectral results on $L^{2}(H_{n})$ related to the action of U(p,q)
Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 177-187.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $H_{n}$ be the (2n+1)-dimensional Heisenberg group, let p,q be two non-negative integers satisfying p+q=n and let G be the semidirect product of U(p,q) and $H_{n}$. So $L^{2}(H_{n})$ has a natural structure of G-module. We obtain a decomposition of $L^{2}(H_{n})$ as a direct integral of irreducible representations of G. On the other hand, we give an explicit description of the joint spectrum σ(L,iT) in $L^{2}(H_{n})$ where $L=\sum_{j=1}^{p} (X_{j}^{2}+Y_{j}^{2}) - \sum_{j=p+1}^{n} (X_{j}^{2}+Y_{j}^{2})$, and where ${X_{1},Y_{1},...,X_{n},Y_{n},T}$ denotes the standard basis of the Lie algebra of $H_{n}$. Finally, we obtain a spectral characterization of the bounded operators on $L^{2}(H_{n})$ that commute with the action of G.
DOI : 10.4064/cm-86-2-177-187

T. Godoy 1 ; L. Saal 1

1
@article{10_4064_cm_86_2_177_187,
     author = {T. Godoy and L. Saal},
     title = {Some spectral results on $L^{2}(H_{n})$ related to the action of {U(p,q)}},
     journal = {Colloquium Mathematicum},
     pages = {177--187},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-86-2-177-187},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-177-187/}
}
TY  - JOUR
AU  - T. Godoy
AU  - L. Saal
TI  - Some spectral results on $L^{2}(H_{n})$ related to the action of U(p,q)
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 177
EP  - 187
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-177-187/
DO  - 10.4064/cm-86-2-177-187
LA  - en
ID  - 10_4064_cm_86_2_177_187
ER  - 
%0 Journal Article
%A T. Godoy
%A L. Saal
%T Some spectral results on $L^{2}(H_{n})$ related to the action of U(p,q)
%J Colloquium Mathematicum
%D 2000
%P 177-187
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-177-187/
%R 10.4064/cm-86-2-177-187
%G en
%F 10_4064_cm_86_2_177_187
T. Godoy; L. Saal. Some spectral results on $L^{2}(H_{n})$ related to the action of U(p,q). Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 177-187. doi : 10.4064/cm-86-2-177-187. http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-177-187/

Cité par Sources :