Some spectral results on $L^{2}(H_{n})$ related to the action of U(p,q)
Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 177-187
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $H_{n}$ be the (2n+1)-dimensional Heisenberg group, let p,q be two non-negative integers satisfying p+q=n and let G be the semidirect product of U(p,q) and $H_{n}$. So $L^{2}(H_{n})$ has a natural structure of G-module. We obtain a decomposition of $L^{2}(H_{n})$ as a direct integral of irreducible representations of G. On the other hand, we give an explicit description of the joint spectrum σ(L,iT) in $L^{2}(H_{n})$ where $L=\sum_{j=1}^{p} (X_{j}^{2}+Y_{j}^{2}) - \sum_{j=p+1}^{n} (X_{j}^{2}+Y_{j}^{2})$, and where ${X_{1},Y_{1},...,X_{n},Y_{n},T}$ denotes the standard basis of the Lie algebra of $H_{n}$. Finally, we obtain a spectral characterization of the bounded operators on $L^{2}(H_{n})$ that commute with the action of G.
@article{10_4064_cm_86_2_177_187,
author = {T. Godoy and L. Saal},
title = {Some spectral results on $L^{2}(H_{n})$ related to the action of {U(p,q)}},
journal = {Colloquium Mathematicum},
pages = {177--187},
publisher = {mathdoc},
volume = {86},
number = {2},
year = {2000},
doi = {10.4064/cm-86-2-177-187},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-177-187/}
}
TY - JOUR
AU - T. Godoy
AU - L. Saal
TI - Some spectral results on $L^{2}(H_{n})$ related to the action of U(p,q)
JO - Colloquium Mathematicum
PY - 2000
SP - 177
EP - 187
VL - 86
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-177-187/
DO - 10.4064/cm-86-2-177-187
LA - en
ID - 10_4064_cm_86_2_177_187
ER -
%0 Journal Article
%A T. Godoy
%A L. Saal
%T Some spectral results on $L^{2}(H_{n})$ related to the action of U(p,q)
%J Colloquium Mathematicum
%D 2000
%P 177-187
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-177-187/
%R 10.4064/cm-86-2-177-187
%G en
%F 10_4064_cm_86_2_177_187
T. Godoy; L. Saal. Some spectral results on $L^{2}(H_{n})$ related to the action of U(p,q). Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 177-187. doi: 10.4064/cm-86-2-177-187
Cité par Sources :