Singular integrals with highly oscillating kernels on product spaces
Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 9-13.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the $L^{2}(
DOI : 10.4064/cm-86-1-9-13

Elena Prestini 1

1
@article{10_4064_cm_86_1_9_13,
     author = {Elena Prestini},
     title = {Singular integrals with highly oscillating kernels on product spaces},
     journal = {Colloquium Mathematicum},
     pages = {9--13},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-86-1-9-13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-9-13/}
}
TY  - JOUR
AU  - Elena Prestini
TI  - Singular integrals with highly oscillating kernels on product spaces
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 9
EP  - 13
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-9-13/
DO  - 10.4064/cm-86-1-9-13
LA  - en
ID  - 10_4064_cm_86_1_9_13
ER  - 
%0 Journal Article
%A Elena Prestini
%T Singular integrals with highly oscillating kernels on product spaces
%J Colloquium Mathematicum
%D 2000
%P 9-13
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-9-13/
%R 10.4064/cm-86-1-9-13
%G en
%F 10_4064_cm_86_1_9_13
Elena Prestini. Singular integrals with highly oscillating kernels on product spaces. Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 9-13. doi : 10.4064/cm-86-1-9-13. http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-9-13/

Cité par Sources :