Singular integrals with highly oscillating kernels on product spaces
Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 9-13
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the $L^{2}(
@article{10_4064_cm_86_1_9_13,
author = {Elena Prestini},
title = {Singular integrals with highly oscillating kernels on product spaces},
journal = {Colloquium Mathematicum},
pages = {9--13},
publisher = {mathdoc},
volume = {86},
number = {1},
year = {2000},
doi = {10.4064/cm-86-1-9-13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-9-13/}
}
TY - JOUR AU - Elena Prestini TI - Singular integrals with highly oscillating kernels on product spaces JO - Colloquium Mathematicum PY - 2000 SP - 9 EP - 13 VL - 86 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-9-13/ DO - 10.4064/cm-86-1-9-13 LA - en ID - 10_4064_cm_86_1_9_13 ER -
Elena Prestini. Singular integrals with highly oscillating kernels on product spaces. Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 9-13. doi: 10.4064/cm-86-1-9-13
Cité par Sources :