Infinite families of noncototients
Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 37-41.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any positive integer $n$ let ϕ(n) be the Euler function of n. A positive integer $n$ is called a noncototient if the equation x-ϕ(x)=n has no solution x. In this note, we give a sufficient condition on a positive integer k such that the geometrical progression $(2^mk)_{m ≥ 1}$ consists entirely of noncototients. We then use computations to detect seven such positive integers k.
DOI : 10.4064/cm-86-1-37-41

A. Flammenkamp 1 ; F. Luca 1

1
@article{10_4064_cm_86_1_37_41,
     author = {A. Flammenkamp and F. Luca},
     title = {Infinite families of noncototients},
     journal = {Colloquium Mathematicum},
     pages = {37--41},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-86-1-37-41},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-37-41/}
}
TY  - JOUR
AU  - A. Flammenkamp
AU  - F. Luca
TI  - Infinite families of noncototients
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 37
EP  - 41
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-37-41/
DO  - 10.4064/cm-86-1-37-41
LA  - en
ID  - 10_4064_cm_86_1_37_41
ER  - 
%0 Journal Article
%A A. Flammenkamp
%A F. Luca
%T Infinite families of noncototients
%J Colloquium Mathematicum
%D 2000
%P 37-41
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-37-41/
%R 10.4064/cm-86-1-37-41
%G en
%F 10_4064_cm_86_1_37_41
A. Flammenkamp; F. Luca. Infinite families of noncototients. Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 37-41. doi : 10.4064/cm-86-1-37-41. http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-37-41/

Cité par Sources :