Infinite families of noncototients
Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 37-41
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For any positive integer $n$ let ϕ(n) be the Euler function of n. A positive integer $n$ is called a noncototient if the equation x-ϕ(x)=n has no solution x. In this note, we give a sufficient condition on a positive integer k such that the geometrical progression $(2^mk)_{m ≥ 1}$ consists entirely of noncototients. We then use computations to detect seven such positive integers k.
@article{10_4064_cm_86_1_37_41,
author = {A. Flammenkamp and F. Luca},
title = {Infinite families of noncototients},
journal = {Colloquium Mathematicum},
pages = {37--41},
publisher = {mathdoc},
volume = {86},
number = {1},
year = {2000},
doi = {10.4064/cm-86-1-37-41},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-37-41/}
}
A. Flammenkamp; F. Luca. Infinite families of noncototients. Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 37-41. doi: 10.4064/cm-86-1-37-41
Cité par Sources :