Support overlapping $L_{1}$ contractions and exact non-singular transformations
Colloquium Mathematicum, Tome 84 (2000) no. 2, pp. 515-520.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let T be a positive linear contraction of $L_{1}$ of a σ-finite measure space (X,Σ,μ) which overlaps supports. In general, T need not be completely mixing, but it is in the following cases: (i) T is the Frobenius-Perron operator of a non-singular transformation ϕ (in which case complete mixing is equivalent to exactness of ϕ). (ii) T is a Harris recurrent operator. (iii) T is a convolution operator on a compact group. (iv) T is a convolution operator on a LCA group.
DOI : 10.4064/cm-84/85-2-515-520

Michael Lin 1

1
@article{10_4064_cm_84_85_2_515_520,
     author = {Michael Lin},
     title = {Support overlapping $L_{1}$ contractions and exact non-singular transformations},
     journal = {Colloquium Mathematicum},
     pages = {515--520},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-84/85-2-515-520},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-515-520/}
}
TY  - JOUR
AU  - Michael Lin
TI  - Support overlapping $L_{1}$ contractions and exact non-singular transformations
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 515
EP  - 520
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-515-520/
DO  - 10.4064/cm-84/85-2-515-520
LA  - en
ID  - 10_4064_cm_84_85_2_515_520
ER  - 
%0 Journal Article
%A Michael Lin
%T Support overlapping $L_{1}$ contractions and exact non-singular transformations
%J Colloquium Mathematicum
%D 2000
%P 515-520
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-515-520/
%R 10.4064/cm-84/85-2-515-520
%G en
%F 10_4064_cm_84_85_2_515_520
Michael Lin. Support overlapping $L_{1}$ contractions and exact non-singular transformations. Colloquium Mathematicum, Tome 84 (2000) no. 2, pp. 515-520. doi : 10.4064/cm-84/85-2-515-520. http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-515-520/

Cité par Sources :