Ergodic decomposition of quasi-invariant probability measures
Colloquium Mathematicum, Tome 84 (2000) no. 2, pp. 495-514
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The purpose of this note is to prove various versions of the ergodic decomposition theorem for probability measures on standard Borel spaces which are quasi-invariant under a Borel action of a locally compact second countable group or a discrete nonsingular equivalence relation. In the process we obtain a simultaneous ergodic decomposition of all quasi-invariant probability measures with a prescribed Radon-Nikodym derivative, analogous to classical results about decomposition of invariant probability measures.
Keywords:
ergodic decomposition, nonsingular group actions, nonsingular equivalence relations, quasi-invariant measures
Affiliations des auteurs :
Gernot Greschonig 1 ; Klaus Schmidt 1
@article{10_4064_cm_84_85_2_495_514,
author = {Gernot Greschonig and Klaus Schmidt},
title = {Ergodic decomposition of quasi-invariant probability measures},
journal = {Colloquium Mathematicum},
pages = {495--514},
year = {2000},
volume = {84},
number = {2},
doi = {10.4064/cm-84/85-2-495-514},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-495-514/}
}
TY - JOUR AU - Gernot Greschonig AU - Klaus Schmidt TI - Ergodic decomposition of quasi-invariant probability measures JO - Colloquium Mathematicum PY - 2000 SP - 495 EP - 514 VL - 84 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-495-514/ DO - 10.4064/cm-84/85-2-495-514 LA - en ID - 10_4064_cm_84_85_2_495_514 ER -
%0 Journal Article %A Gernot Greschonig %A Klaus Schmidt %T Ergodic decomposition of quasi-invariant probability measures %J Colloquium Mathematicum %D 2000 %P 495-514 %V 84 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-495-514/ %R 10.4064/cm-84/85-2-495-514 %G en %F 10_4064_cm_84_85_2_495_514
Gernot Greschonig; Klaus Schmidt. Ergodic decomposition of quasi-invariant probability measures. Colloquium Mathematicum, Tome 84 (2000) no. 2, pp. 495-514. doi: 10.4064/cm-84/85-2-495-514
Cité par Sources :