Construction of non-constant and ergodic cocycles
Colloquium Mathematicum, Tome 84 (2000) no. 2, pp. 395-419.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct continuous G-valued cocycles that are not cohomologous to any compact constant via a measurable transfer function, provided the underlying dynamical system is rigid and the range group G satisfies a certain general condition. For more general ergodic aperiodic systems, we also show that the set of continuous ergodic cocycles is residual in the class of all continuous cocycles provided the range group G is a compact connected Lie group. The first construction is based on the "closure of coboundaries technique", whereas the second result is proved by developing in addition a new approximation technique.
DOI : 10.4064/cm-84/85-2-395-419
Keywords: cocycles, rigid dynamical systems, ergodicity

Mahesh Nerurkar 1

1
@article{10_4064_cm_84_85_2_395_419,
     author = {Mahesh Nerurkar},
     title = {Construction of non-constant and ergodic cocycles},
     journal = {Colloquium Mathematicum},
     pages = {395--419},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-84/85-2-395-419},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-395-419/}
}
TY  - JOUR
AU  - Mahesh Nerurkar
TI  - Construction of non-constant and ergodic cocycles
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 395
EP  - 419
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-395-419/
DO  - 10.4064/cm-84/85-2-395-419
LA  - en
ID  - 10_4064_cm_84_85_2_395_419
ER  - 
%0 Journal Article
%A Mahesh Nerurkar
%T Construction of non-constant and ergodic cocycles
%J Colloquium Mathematicum
%D 2000
%P 395-419
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-395-419/
%R 10.4064/cm-84/85-2-395-419
%G en
%F 10_4064_cm_84_85_2_395_419
Mahesh Nerurkar. Construction of non-constant and ergodic cocycles. Colloquium Mathematicum, Tome 84 (2000) no. 2, pp. 395-419. doi : 10.4064/cm-84/85-2-395-419. http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-395-419/

Cité par Sources :