Locally equicontinuous dynamical systems
Colloquium Mathematicum, Tome 84 (2000) no. 2, pp. 345-361.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A new class of dynamical systems is defined, the class of "locally equicontinuous systems" (LE). We show that the property LE is inherited by factors as well as subsystems, and is closed under the operations of pointed products and inverse limits. In other words, the locally equicontinuous functions in $l_{∞}(ℤ)$ form a uniformly closed translation invariant subalgebra. We show that WAP ⊂ LE ⊂ AE, where WAP is the class of weakly almost periodic systems and AE the class of almost equicontinuous systems. Both of these inclusions are proper. The main result of the paper is to produce a family of examples of LE dynamical systems which are not WAP.
DOI : 10.4064/cm-84/85-2-345-361

Eli Glasner 1 ; Benjamin Weiss 1

1
@article{10_4064_cm_84_85_2_345_361,
     author = {Eli Glasner and Benjamin Weiss},
     title = {Locally equicontinuous dynamical systems},
     journal = {Colloquium Mathematicum},
     pages = {345--361},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-84/85-2-345-361},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-345-361/}
}
TY  - JOUR
AU  - Eli Glasner
AU  - Benjamin Weiss
TI  - Locally equicontinuous dynamical systems
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 345
EP  - 361
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-345-361/
DO  - 10.4064/cm-84/85-2-345-361
LA  - en
ID  - 10_4064_cm_84_85_2_345_361
ER  - 
%0 Journal Article
%A Eli Glasner
%A Benjamin Weiss
%T Locally equicontinuous dynamical systems
%J Colloquium Mathematicum
%D 2000
%P 345-361
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-345-361/
%R 10.4064/cm-84/85-2-345-361
%G en
%F 10_4064_cm_84_85_2_345_361
Eli Glasner; Benjamin Weiss. Locally equicontinuous dynamical systems. Colloquium Mathematicum, Tome 84 (2000) no. 2, pp. 345-361. doi : 10.4064/cm-84/85-2-345-361. http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-345-361/

Cité par Sources :