Symmetric cocycles and classical exponential sums
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 125-145
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper considers certain classical exponential sums as examples of cocycles with additional symmetries. Thus we simplify the proof of a result of Anderson and Pitt concerning the density of lacunary exponential partial sums $\sum_{k=0}^n exp(2πim^{k}x)$, n=1,2,..., for fixed integer m ≥ 2. Also, with the help of Hardy and Littlewood's approximate functional equation, but otherwise by elementary considerations, we improve a previous result of the author for certain examples of Weyl sum: if θ ∈ [0,1] \ ℚ has continued fraction representation $[a_{1},a_{2},... ]$ such that $\sum_{n} 1/a_{n} ∞$, and $|θ - p/q| 1/q^{4+ε}$ infinitely often for some ε $#62; 0, then, for Lebesgue almost all x ∈ [0,1], the partial sums $\sum_{k=0}^n exp(2πi(k^{2}θ + 2kx))$, n=1,2,..., are dense in ℂ.
@article{10_4064_cm_84_85_1_125_145,
author = {Alan Forrest},
title = {Symmetric cocycles and classical exponential sums},
journal = {Colloquium Mathematicum},
pages = {125--145},
publisher = {mathdoc},
volume = {84},
number = {1},
year = {2000},
doi = {10.4064/cm-84/85-1-125-145},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-125-145/}
}
TY - JOUR AU - Alan Forrest TI - Symmetric cocycles and classical exponential sums JO - Colloquium Mathematicum PY - 2000 SP - 125 EP - 145 VL - 84 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-125-145/ DO - 10.4064/cm-84/85-1-125-145 LA - en ID - 10_4064_cm_84_85_1_125_145 ER -
Alan Forrest. Symmetric cocycles and classical exponential sums. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 125-145. doi: 10.4064/cm-84/85-1-125-145
Cité par Sources :