Symmetric cocycles and classical exponential sums
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 125-145.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper considers certain classical exponential sums as examples of cocycles with additional symmetries. Thus we simplify the proof of a result of Anderson and Pitt concerning the density of lacunary exponential partial sums $\sum_{k=0}^n exp(2πim^{k}x)$, n=1,2,..., for fixed integer m ≥ 2. Also, with the help of Hardy and Littlewood's approximate functional equation, but otherwise by elementary considerations, we improve a previous result of the author for certain examples of Weyl sum: if θ ∈ [0,1] \ ℚ has continued fraction representation $[a_{1},a_{2},... ]$ such that $\sum_{n} 1/a_{n} ∞$, and $|θ - p/q| 1/q^{4+ε}$ infinitely often for some ε $#62; 0, then, for Lebesgue almost all x ∈ [0,1], the partial sums $\sum_{k=0}^n exp(2πi(k^{2}θ + 2kx))$, n=1,2,..., are dense in ℂ.
DOI : 10.4064/cm-84/85-1-125-145

Alan Forrest 1

1
@article{10_4064_cm_84_85_1_125_145,
     author = {Alan Forrest},
     title = {Symmetric cocycles and classical exponential sums},
     journal = {Colloquium Mathematicum},
     pages = {125--145},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-84/85-1-125-145},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-125-145/}
}
TY  - JOUR
AU  - Alan Forrest
TI  - Symmetric cocycles and classical exponential sums
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 125
EP  - 145
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-125-145/
DO  - 10.4064/cm-84/85-1-125-145
LA  - en
ID  - 10_4064_cm_84_85_1_125_145
ER  - 
%0 Journal Article
%A Alan Forrest
%T Symmetric cocycles and classical exponential sums
%J Colloquium Mathematicum
%D 2000
%P 125-145
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-125-145/
%R 10.4064/cm-84/85-1-125-145
%G en
%F 10_4064_cm_84_85_1_125_145
Alan Forrest. Symmetric cocycles and classical exponential sums. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 125-145. doi : 10.4064/cm-84/85-1-125-145. http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-125-145/

Cité par Sources :