"Counterexamples" to the harmonic Liouville theorem and harmonic functions with zero nontangential limits
Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 155-160
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that, if μ>0, then there exists a linear manifold M of harmonic functions in $ℝ^N$ which is dense in the space of all harmonic functions in $ℝ^N$ and lim_{{‖x‖→∞} {x ∈ S}} ‖x‖^{μ}D^{α}v(x) = 0 for every v ∈ M and multi-index α, where S denotes any hyperplane strip. Moreover, every nonnull function in M is universal. In particular, if μ ≥ N+1, then every function v ∈ M satisfies ∫_H vdλ =0 for every (N-1)-dimensional hyperplane H, where λ denotes the (N-1)-dimensional Lebesgue measure. On the other hand, we prove that there exists a linear manifold M of harmonic functions in the unit ball
Keywords:
nontangential limits, universal function, approximation, Liouville harmonic theorem, Radon transform, harmonic functions
Affiliations des auteurs :
A. Bonilla 1
@article{10_4064_cm_83_2_155_160,
author = {A. Bonilla},
title = {"Counterexamples" to the harmonic {Liouville} theorem and harmonic functions with zero nontangential limits},
journal = {Colloquium Mathematicum},
pages = {155--160},
publisher = {mathdoc},
volume = {83},
number = {2},
year = {2000},
doi = {10.4064/cm-83-2-155-160},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-155-160/}
}
TY - JOUR AU - A. Bonilla TI - "Counterexamples" to the harmonic Liouville theorem and harmonic functions with zero nontangential limits JO - Colloquium Mathematicum PY - 2000 SP - 155 EP - 160 VL - 83 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-155-160/ DO - 10.4064/cm-83-2-155-160 LA - en ID - 10_4064_cm_83_2_155_160 ER -
%0 Journal Article %A A. Bonilla %T "Counterexamples" to the harmonic Liouville theorem and harmonic functions with zero nontangential limits %J Colloquium Mathematicum %D 2000 %P 155-160 %V 83 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-155-160/ %R 10.4064/cm-83-2-155-160 %G en %F 10_4064_cm_83_2_155_160
A. Bonilla. "Counterexamples" to the harmonic Liouville theorem and harmonic functions with zero nontangential limits. Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 155-160. doi: 10.4064/cm-83-2-155-160
Cité par Sources :