"Counterexamples" to the harmonic Liouville theorem and harmonic functions with zero nontangential limits
Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 155-160.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that, if μ>0, then there exists a linear manifold M of harmonic functions in $ℝ^N$ which is dense in the space of all harmonic functions in $ℝ^N$ and lim_{{‖x‖→∞} {x ∈ S}} ‖x‖^{μ}D^{α}v(x) = 0 for every v ∈ M and multi-index α, where S denotes any hyperplane strip. Moreover, every nonnull function in M is universal. In particular, if μ ≥ N+1, then every function v ∈ M satisfies ∫_H vdλ =0 for every (N-1)-dimensional hyperplane H, where λ denotes the (N-1)-dimensional Lebesgue measure. On the other hand, we prove that there exists a linear manifold M of harmonic functions in the unit ball
DOI : 10.4064/cm-83-2-155-160
Keywords: nontangential limits, universal function, approximation, Liouville harmonic theorem, Radon transform, harmonic functions

A. Bonilla 1

1
@article{10_4064_cm_83_2_155_160,
     author = {A. Bonilla},
     title = {"Counterexamples" to the harmonic {Liouville} theorem and harmonic functions with zero nontangential limits},
     journal = {Colloquium Mathematicum},
     pages = {155--160},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-83-2-155-160},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-155-160/}
}
TY  - JOUR
AU  - A. Bonilla
TI  - "Counterexamples" to the harmonic Liouville theorem and harmonic functions with zero nontangential limits
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 155
EP  - 160
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-155-160/
DO  - 10.4064/cm-83-2-155-160
LA  - en
ID  - 10_4064_cm_83_2_155_160
ER  - 
%0 Journal Article
%A A. Bonilla
%T "Counterexamples" to the harmonic Liouville theorem and harmonic functions with zero nontangential limits
%J Colloquium Mathematicum
%D 2000
%P 155-160
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-155-160/
%R 10.4064/cm-83-2-155-160
%G en
%F 10_4064_cm_83_2_155_160
A. Bonilla. "Counterexamples" to the harmonic Liouville theorem and harmonic functions with zero nontangential limits. Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 155-160. doi : 10.4064/cm-83-2-155-160. http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-155-160/

Cité par Sources :