Additive functions for quivers with relations
Colloquium Mathematicum, Tome 82 (1999) no. 1, pp. 85-103
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Additive functions for quivers with relations extend the classical concept of additive functions for graphs. It is shown that the concept, recently introduced by T. Hübner in a special context, can be defined for different homological levels. The existence of such functions for level 2 resp. ∞ relates to a nonzero radical of the Tits resp. Euler form. We derive the existence of nonnegative additive functions from a family of stable tubes which stay tubes in the derived category, we investigate when this situation does appear and we study the restrictions imposed by the existence of a positive additive function.
Affiliations des auteurs :
Helmut Lenzing 1 ; Idun Reiten 1
@article{10_4064_cm_82_1_85_103,
author = {Helmut Lenzing and Idun Reiten},
title = {Additive functions for quivers with relations},
journal = {Colloquium Mathematicum},
pages = {85--103},
year = {1999},
volume = {82},
number = {1},
doi = {10.4064/cm-82-1-85-103},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-85-103/}
}
TY - JOUR AU - Helmut Lenzing AU - Idun Reiten TI - Additive functions for quivers with relations JO - Colloquium Mathematicum PY - 1999 SP - 85 EP - 103 VL - 82 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-85-103/ DO - 10.4064/cm-82-1-85-103 LA - en ID - 10_4064_cm_82_1_85_103 ER -
Helmut Lenzing; Idun Reiten. Additive functions for quivers with relations. Colloquium Mathematicum, Tome 82 (1999) no. 1, pp. 85-103. doi: 10.4064/cm-82-1-85-103
Cité par Sources :