Additive functions for quivers with relations
Colloquium Mathematicum, Tome 82 (1999) no. 1, pp. 85-103.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Additive functions for quivers with relations extend the classical concept of additive functions for graphs. It is shown that the concept, recently introduced by T. Hübner in a special context, can be defined for different homological levels. The existence of such functions for level 2 resp. ∞ relates to a nonzero radical of the Tits resp. Euler form. We derive the existence of nonnegative additive functions from a family of stable tubes which stay tubes in the derived category, we investigate when this situation does appear and we study the restrictions imposed by the existence of a positive additive function.
DOI : 10.4064/cm-82-1-85-103

Helmut Lenzing 1 ; Idun Reiten 1

1
@article{10_4064_cm_82_1_85_103,
     author = {Helmut Lenzing and Idun Reiten},
     title = {Additive functions for quivers with relations},
     journal = {Colloquium Mathematicum},
     pages = {85--103},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {1999},
     doi = {10.4064/cm-82-1-85-103},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-85-103/}
}
TY  - JOUR
AU  - Helmut Lenzing
AU  - Idun Reiten
TI  - Additive functions for quivers with relations
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 85
EP  - 103
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-85-103/
DO  - 10.4064/cm-82-1-85-103
LA  - en
ID  - 10_4064_cm_82_1_85_103
ER  - 
%0 Journal Article
%A Helmut Lenzing
%A Idun Reiten
%T Additive functions for quivers with relations
%J Colloquium Mathematicum
%D 1999
%P 85-103
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-85-103/
%R 10.4064/cm-82-1-85-103
%G en
%F 10_4064_cm_82_1_85_103
Helmut Lenzing; Idun Reiten. Additive functions for quivers with relations. Colloquium Mathematicum, Tome 82 (1999) no. 1, pp. 85-103. doi : 10.4064/cm-82-1-85-103. http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-85-103/

Cité par Sources :