Quotients of toric varieties by actions of subtori
Colloquium Mathematicum, Tome 82 (1999) no. 1, pp. 105-116.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let X be an algebraic toric variety with respect to an action of an algebraic torus S. Let Σ be the corresponding fan. The aim of this paper is to investigate open subsets of X with a good quotient by the (induced) action of a subtorus T ⊂ S. It turns out that it is enough to consider open S-invariant subsets of X with a good quotient by T. These subsets can be described by subfans of Σ. We give a description of such subfans and also a description of fans corresponding to quotient varieties. Moreover, we give conditions for a subfan to define an open subset with a complete quotient space.
DOI : 10.4064/cm-82-1-105-116
Keywords: group actions, quotients, orbit spaces

Joanna Święcicka 1

1
@article{10_4064_cm_82_1_105_116,
     author = {Joanna \'Swi\k{e}cicka},
     title = {Quotients of toric varieties by actions of subtori},
     journal = {Colloquium Mathematicum},
     pages = {105--116},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {1999},
     doi = {10.4064/cm-82-1-105-116},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-105-116/}
}
TY  - JOUR
AU  - Joanna Święcicka
TI  - Quotients of toric varieties by actions of subtori
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 105
EP  - 116
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-105-116/
DO  - 10.4064/cm-82-1-105-116
LA  - en
ID  - 10_4064_cm_82_1_105_116
ER  - 
%0 Journal Article
%A Joanna Święcicka
%T Quotients of toric varieties by actions of subtori
%J Colloquium Mathematicum
%D 1999
%P 105-116
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-105-116/
%R 10.4064/cm-82-1-105-116
%G en
%F 10_4064_cm_82_1_105_116
Joanna Święcicka. Quotients of toric varieties by actions of subtori. Colloquium Mathematicum, Tome 82 (1999) no. 1, pp. 105-116. doi : 10.4064/cm-82-1-105-116. http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-105-116/

Cité par Sources :