Tame three-partite subamalgams of tiled orders of polynomial growth
Colloquium Mathematicum, Tome 81 (1999) no. 2, pp. 237-262
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Assume that K is an algebraically closed field. Let D be a complete discrete valuation domain with a unique maximal ideal p and residue field D/p ≌ K. We also assume that D is an algebra over the field K . We study subamalgam D-suborders $Λ^•$ (1.2) of tiled D-orders Λ (1.1). A simple criterion for a tame lattice type subamalgam D-order $Λ^•$ to be of polynomial growth is given in Theorem 1.5. Tame lattice type subamalgam D-orders $Λ^•$ of non-polynomial growth are completely described in Theorem 6.2 and Corollary 6.3.
@article{10_4064_cm_81_2_237_262,
author = {Daniel Simson},
title = {Tame three-partite subamalgams of tiled orders of polynomial growth},
journal = {Colloquium Mathematicum},
pages = {237--262},
publisher = {mathdoc},
volume = {81},
number = {2},
year = {1999},
doi = {10.4064/cm-81-2-237-262},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-81-2-237-262/}
}
TY - JOUR AU - Daniel Simson TI - Tame three-partite subamalgams of tiled orders of polynomial growth JO - Colloquium Mathematicum PY - 1999 SP - 237 EP - 262 VL - 81 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-81-2-237-262/ DO - 10.4064/cm-81-2-237-262 LA - en ID - 10_4064_cm_81_2_237_262 ER -
Daniel Simson. Tame three-partite subamalgams of tiled orders of polynomial growth. Colloquium Mathematicum, Tome 81 (1999) no. 2, pp. 237-262. doi: 10.4064/cm-81-2-237-262
Cité par Sources :