Tame three-partite subamalgams of tiled orders of polynomial growth
Colloquium Mathematicum, Tome 81 (1999) no. 2, pp. 237-262.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Assume that K is an algebraically closed field. Let D be a complete discrete valuation domain with a unique maximal ideal p and residue field D/p ≌ K. We also assume that D is an algebra over the field K . We study subamalgam D-suborders $Λ^•$ (1.2) of tiled D-orders Λ (1.1). A simple criterion for a tame lattice type subamalgam D-order $Λ^•$ to be of polynomial growth is given in Theorem 1.5. Tame lattice type subamalgam D-orders $Λ^•$ of non-polynomial growth are completely described in Theorem 6.2 and Corollary 6.3.
DOI : 10.4064/cm-81-2-237-262

Daniel Simson 1

1
@article{10_4064_cm_81_2_237_262,
     author = {Daniel Simson},
     title = {Tame three-partite subamalgams of tiled orders of polynomial growth},
     journal = {Colloquium Mathematicum},
     pages = {237--262},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {1999},
     doi = {10.4064/cm-81-2-237-262},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-81-2-237-262/}
}
TY  - JOUR
AU  - Daniel Simson
TI  - Tame three-partite subamalgams of tiled orders of polynomial growth
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 237
EP  - 262
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-81-2-237-262/
DO  - 10.4064/cm-81-2-237-262
LA  - en
ID  - 10_4064_cm_81_2_237_262
ER  - 
%0 Journal Article
%A Daniel Simson
%T Tame three-partite subamalgams of tiled orders of polynomial growth
%J Colloquium Mathematicum
%D 1999
%P 237-262
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-81-2-237-262/
%R 10.4064/cm-81-2-237-262
%G en
%F 10_4064_cm_81_2_237_262
Daniel Simson. Tame three-partite subamalgams of tiled orders of polynomial growth. Colloquium Mathematicum, Tome 81 (1999) no. 2, pp. 237-262. doi : 10.4064/cm-81-2-237-262. http://geodesic.mathdoc.fr/articles/10.4064/cm-81-2-237-262/

Cité par Sources :