On quasitilted algebras which are one-point extensions of hereditary algebras
Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 141-152.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Quasitilted algebras have been introduced as a proper generalization of tilted algebras. In an earlier article we determined necessary conditions for one-point extensions of decomposable finite-dimensional hereditary algebras to be quasitilted and not tilted. In this article we study algebras satisfying these necessary conditions in order to investigate to what extent the conditions are sufficient.
DOI : 10.4064/cm-81-1-141-152

Dieter Happel 1 ; Inger Slungård 1

1
@article{10_4064_cm_81_1_141_152,
     author = {Dieter Happel and Inger Slung\r{a}rd},
     title = {On quasitilted algebras which are one-point extensions of hereditary algebras},
     journal = {Colloquium Mathematicum},
     pages = {141--152},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {1999},
     doi = {10.4064/cm-81-1-141-152},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-141-152/}
}
TY  - JOUR
AU  - Dieter Happel
AU  - Inger Slungård
TI  - On quasitilted algebras which are one-point extensions of hereditary algebras
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 141
EP  - 152
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-141-152/
DO  - 10.4064/cm-81-1-141-152
LA  - en
ID  - 10_4064_cm_81_1_141_152
ER  - 
%0 Journal Article
%A Dieter Happel
%A Inger Slungård
%T On quasitilted algebras which are one-point extensions of hereditary algebras
%J Colloquium Mathematicum
%D 1999
%P 141-152
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-141-152/
%R 10.4064/cm-81-1-141-152
%G en
%F 10_4064_cm_81_1_141_152
Dieter Happel; Inger Slungård. On quasitilted algebras which are one-point extensions of hereditary algebras. Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 141-152. doi : 10.4064/cm-81-1-141-152. http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-141-152/

Cité par Sources :