Tightness and π-character in centered spaces
Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 297-307.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We continue an investigation into centered spaces, a generalization of dyadic spaces. The presence of large Cantor cubes in centered spaces is deduced from tightness considerations. It follows that for centered spaces X, πχ(X) = t(X), and if X has uncountable tightness, then t(X) = sup{κ : $2^κ$ ⊂ X}. The relationships between 9 popular cardinal functions for the class of centered spaces are justified. An example is constructed which shows, unlike the dyadic and polyadic properties, that the centered property is not preserved by passage to a zeroset.
DOI : 10.4064/cm-80-2-297-307
Keywords: centered, tightness, compact, π-character

Murray Bell 1

1
@article{10_4064_cm_80_2_297_307,
     author = {Murray Bell},
     title = {Tightness and \ensuremath{\pi}-character in centered spaces},
     journal = {Colloquium Mathematicum},
     pages = {297--307},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1999},
     doi = {10.4064/cm-80-2-297-307},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-297-307/}
}
TY  - JOUR
AU  - Murray Bell
TI  - Tightness and π-character in centered spaces
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 297
EP  - 307
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-297-307/
DO  - 10.4064/cm-80-2-297-307
LA  - en
ID  - 10_4064_cm_80_2_297_307
ER  - 
%0 Journal Article
%A Murray Bell
%T Tightness and π-character in centered spaces
%J Colloquium Mathematicum
%D 1999
%P 297-307
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-297-307/
%R 10.4064/cm-80-2-297-307
%G en
%F 10_4064_cm_80_2_297_307
Murray Bell. Tightness and π-character in centered spaces. Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 297-307. doi : 10.4064/cm-80-2-297-307. http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-297-307/

Cité par Sources :