Reading along arithmetic progressions
Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 293-296.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a 0-1 sequence x in which both letters occur with density 1/2, do there exist arbitrarily long arithmetic progressions along which x reads 010101...? We answer the above negatively by showing that a certain regular triadic Toeplitz sequence does not have this property. On the other hand, we prove that if x is a generalized binary Morse sequence then each block can be read in x along some arithmetic progression.
DOI : 10.4064/cm-80-2-293-296
Keywords: Szemeredi Theorem, Morse sequence, Toeplitz sequence

T. Downarowicz 1

1
@article{10_4064_cm_80_2_293_296,
     author = {T. Downarowicz},
     title = {Reading along arithmetic progressions},
     journal = {Colloquium Mathematicum},
     pages = {293--296},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1999},
     doi = {10.4064/cm-80-2-293-296},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-293-296/}
}
TY  - JOUR
AU  - T. Downarowicz
TI  - Reading along arithmetic progressions
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 293
EP  - 296
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-293-296/
DO  - 10.4064/cm-80-2-293-296
LA  - en
ID  - 10_4064_cm_80_2_293_296
ER  - 
%0 Journal Article
%A T. Downarowicz
%T Reading along arithmetic progressions
%J Colloquium Mathematicum
%D 1999
%P 293-296
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-293-296/
%R 10.4064/cm-80-2-293-296
%G en
%F 10_4064_cm_80_2_293_296
T. Downarowicz. Reading along arithmetic progressions. Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 293-296. doi : 10.4064/cm-80-2-293-296. http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-293-296/

Cité par Sources :