Mapping Properties of $c_0$
Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 235-244.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Bessaga and Pełczyński showed that if $c_0$ embeds in the dual $X^*$ of a Banach space X, then $ℓ^1$ embeds as a complemented subspace of X. Pełczyński proved that every infinite-dimensional closed linear subspace of $ℓ^1$ contains a copy of $ℓ^1$ that is complemented in $ℓ^1$. Later, Kadec and Pełczyński proved that every non-reflexive closed linear subspace of $L^1 [0,1]$ contains a copy of $ℓ^1$ that is complemented in $L^1 [0,1]$. In this note a traditional sliding hump argument is used to establish a simple mapping property of $c_0$ which simultaneously yields extensions of the preceding theorems as corollaries. Additional classical mapping properties of $c_0$ are briefly discussed and applications are given.
DOI : 10.4064/cm-80-2-235-244

Paul Lewis 1

1
@article{10_4064_cm_80_2_235_244,
     author = {Paul Lewis},
     title = {Mapping {Properties} of $c_0$},
     journal = {Colloquium Mathematicum},
     pages = {235--244},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1999},
     doi = {10.4064/cm-80-2-235-244},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-235-244/}
}
TY  - JOUR
AU  - Paul Lewis
TI  - Mapping Properties of $c_0$
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 235
EP  - 244
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-235-244/
DO  - 10.4064/cm-80-2-235-244
LA  - en
ID  - 10_4064_cm_80_2_235_244
ER  - 
%0 Journal Article
%A Paul Lewis
%T Mapping Properties of $c_0$
%J Colloquium Mathematicum
%D 1999
%P 235-244
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-235-244/
%R 10.4064/cm-80-2-235-244
%G en
%F 10_4064_cm_80_2_235_244
Paul Lewis. Mapping Properties of $c_0$. Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 235-244. doi : 10.4064/cm-80-2-235-244. http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-235-244/

Cité par Sources :