A relatively free topological group that is not varietal free
Colloquium Mathematicum, Tome 77 (1998) no. 1, pp. 1-8.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Answering a 1982 question of Sidney A. Morris, we construct a topological group G and a subspace X such that (i) G is algebraically free over X, (ii) G is relatively free over X, that is, every continuous mapping from X to G extends to a unique continuous endomorphism of G, and (iii) G is not a varietal free topological group on X in any variety of topological groups.
DOI : 10.4064/cm-77-1-1-8
Keywords: relatively free topological group, variety of topological groups, free zero-dimensional topological group, varietal free topological group

Vladimir Pestov 1 ; Dmitri Shakhmatov 1

1
@article{10_4064_cm_77_1_1_8,
     author = {Vladimir Pestov and Dmitri Shakhmatov},
     title = {A relatively free topological group that is not varietal free},
     journal = {Colloquium Mathematicum},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {1998},
     doi = {10.4064/cm-77-1-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-77-1-1-8/}
}
TY  - JOUR
AU  - Vladimir Pestov
AU  - Dmitri Shakhmatov
TI  - A relatively free topological group that is not varietal free
JO  - Colloquium Mathematicum
PY  - 1998
SP  - 1
EP  - 8
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-77-1-1-8/
DO  - 10.4064/cm-77-1-1-8
LA  - en
ID  - 10_4064_cm_77_1_1_8
ER  - 
%0 Journal Article
%A Vladimir Pestov
%A Dmitri Shakhmatov
%T A relatively free topological group that is not varietal free
%J Colloquium Mathematicum
%D 1998
%P 1-8
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-77-1-1-8/
%R 10.4064/cm-77-1-1-8
%G en
%F 10_4064_cm_77_1_1_8
Vladimir Pestov; Dmitri Shakhmatov. A relatively free topological group that is not varietal free. Colloquium Mathematicum, Tome 77 (1998) no. 1, pp. 1-8. doi : 10.4064/cm-77-1-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm-77-1-1-8/

Cité par Sources :