A relatively free topological group that is not varietal free
Colloquium Mathematicum, Tome 77 (1998) no. 1, pp. 1-8
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Answering a 1982 question of Sidney A. Morris, we construct a topological group G and a subspace X such that (i) G is algebraically free over X, (ii) G is relatively free over X, that is, every continuous mapping from X to G extends to a unique continuous endomorphism of G, and (iii) G is not a varietal free topological group on X in any variety of topological groups.
Keywords:
relatively free topological group, variety of topological groups, free zero-dimensional topological group, varietal free topological group
Affiliations des auteurs :
Vladimir Pestov 1 ; Dmitri Shakhmatov 1
@article{10_4064_cm_77_1_1_8,
author = {Vladimir Pestov and Dmitri Shakhmatov},
title = {A relatively free topological group that is not varietal free},
journal = {Colloquium Mathematicum},
pages = {1--8},
publisher = {mathdoc},
volume = {77},
number = {1},
year = {1998},
doi = {10.4064/cm-77-1-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-77-1-1-8/}
}
TY - JOUR AU - Vladimir Pestov AU - Dmitri Shakhmatov TI - A relatively free topological group that is not varietal free JO - Colloquium Mathematicum PY - 1998 SP - 1 EP - 8 VL - 77 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-77-1-1-8/ DO - 10.4064/cm-77-1-1-8 LA - en ID - 10_4064_cm_77_1_1_8 ER -
Vladimir Pestov; Dmitri Shakhmatov. A relatively free topological group that is not varietal free. Colloquium Mathematicum, Tome 77 (1998) no. 1, pp. 1-8. doi: 10.4064/cm-77-1-1-8
Cité par Sources :