Norm estimates of discrete Schrödinger operators
Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 153-160.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Harper's operator is defined on $\ell^2({\sym Z})$ by $$ H_\theta \xi(n) = \xi(n+1) + \xi(n-1) + 2\cos n\theta\, \xi(n), $$ where $\theta\! \in \![0,\pi]$. We show that the norm of $\|H_\theta\|$ is less than or equal to $2\sqrt{2}$ for $\pi/2 \le\theta\le \pi$. This solves a conjecture stated in [1]. A general formula for estimating the norm of self-adjoint tridiagonal infinite matrices is also derived.
DOI : 10.4064/cm-76-1-153-160
Keywords: norm estimate, Harper's operator, difference operator

Ryszard Szwarc 1

1
@article{10_4064_cm_76_1_153_160,
     author = {Ryszard Szwarc},
     title = {Norm estimates of discrete {Schr\"odinger} operators},
     journal = {Colloquium Mathematicum},
     pages = {153--160},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {1998},
     doi = {10.4064/cm-76-1-153-160},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-153-160/}
}
TY  - JOUR
AU  - Ryszard Szwarc
TI  - Norm estimates of discrete Schrödinger operators
JO  - Colloquium Mathematicum
PY  - 1998
SP  - 153
EP  - 160
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-153-160/
DO  - 10.4064/cm-76-1-153-160
LA  - en
ID  - 10_4064_cm_76_1_153_160
ER  - 
%0 Journal Article
%A Ryszard Szwarc
%T Norm estimates of discrete Schrödinger operators
%J Colloquium Mathematicum
%D 1998
%P 153-160
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-153-160/
%R 10.4064/cm-76-1-153-160
%G en
%F 10_4064_cm_76_1_153_160
Ryszard Szwarc. Norm estimates of discrete Schrödinger operators. Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 153-160. doi : 10.4064/cm-76-1-153-160. http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-153-160/

Cité par Sources :