On strongly sum-free subsets of abelian groups
Colloquium Mathematicum, Tome 71 (1996) no. 1, pp. 149-151
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In his book on unsolved problems in number theory [1] R. K. Guy asks whether for every natural l there exists $n_0 = n_0(l)$ with the following property: for every $n ≥ n_0$ and any n elements $a_1,...,a_n$ of a group such that the product of any two of them is different from the unit element of the group, there exist l of the $a_i$ such that $a_{i_j}a_{i_k} ≠ a_m$ for $1 ≤ j k ≤ l$ and $1 ≤ m ≤ n$. In this note we answer this question in the affirmative in the first non-trivial case when l=3 and the group is abelian, proving the following result.
Affiliations des auteurs :
Tomasz Łuczak 1 ; Tomasz Schoen 1
@article{10_4064_cm_71_1_149_151,
author = {Tomasz {\L}uczak and Tomasz Schoen},
title = {On strongly sum-free subsets of abelian groups},
journal = {Colloquium Mathematicum},
pages = {149--151},
publisher = {mathdoc},
volume = {71},
number = {1},
year = {1996},
doi = {10.4064/cm-71-1-149-151},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-71-1-149-151/}
}
TY - JOUR AU - Tomasz Łuczak AU - Tomasz Schoen TI - On strongly sum-free subsets of abelian groups JO - Colloquium Mathematicum PY - 1996 SP - 149 EP - 151 VL - 71 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-71-1-149-151/ DO - 10.4064/cm-71-1-149-151 LA - en ID - 10_4064_cm_71_1_149_151 ER -
Tomasz Łuczak; Tomasz Schoen. On strongly sum-free subsets of abelian groups. Colloquium Mathematicum, Tome 71 (1996) no. 1, pp. 149-151. doi: 10.4064/cm-71-1-149-151
Cité par Sources :