On Ditkin sets
Colloquium Mathematicum, Tome 69 (1996) no. 2, pp. 271-274.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In the study of spectral synthesis S-sets and C-sets (see Rudin [3]; Reiter [2] uses the terminology Wiener sets and Wiener-Ditkin sets respectively) have been discussed extensively. A new concept of Ditkin sets was introduced and studied by Stegeman in [4] so that, in Reiter's terminology, Wiener-Ditkin sets are precisely sets which are both Wiener sets and Ditkin sets. The importance of such sets in spectral synthesis and their connection to the C-set-S-set problem (see Rudin [3]) are mentioned there. In this paper we study local properties, unions and intersections of Ditkin sets. (Warning: Usually in the literature "Ditkin set" means "C-set", but we follow the terminology of Stegeman.) Our results include: (i) if each point of a closed set E has a closed relative Ditkin neighbourhood, then E is a Ditkin set; (ii) any closed countable union of Ditkin sets is a Ditkin set; (iii) if $E_1 ∩ E_2$ is a Ditkin set, then $E_1 ∩ E_2$ is a Ditkin set if and only if $E_1$ and $E_2$ are Ditkin sets; and (iv) if $E_1, E_2$ are Ditkin sets with disjoint boundaries then $E_1 ∩ E_2$ is a Ditkin set.
DOI : 10.4064/cm-69-2-271-274

T. Muraleedharan 1 ; K. Parthasarathy 1

1
@article{10_4064_cm_69_2_271_274,
     author = {T. Muraleedharan and K. Parthasarathy},
     title = {On {Ditkin} sets},
     journal = {Colloquium Mathematicum},
     pages = {271--274},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {1996},
     doi = {10.4064/cm-69-2-271-274},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-271-274/}
}
TY  - JOUR
AU  - T. Muraleedharan
AU  - K. Parthasarathy
TI  - On Ditkin sets
JO  - Colloquium Mathematicum
PY  - 1996
SP  - 271
EP  - 274
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-271-274/
DO  - 10.4064/cm-69-2-271-274
LA  - fr
ID  - 10_4064_cm_69_2_271_274
ER  - 
%0 Journal Article
%A T. Muraleedharan
%A K. Parthasarathy
%T On Ditkin sets
%J Colloquium Mathematicum
%D 1996
%P 271-274
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-271-274/
%R 10.4064/cm-69-2-271-274
%G fr
%F 10_4064_cm_69_2_271_274
T. Muraleedharan; K. Parthasarathy. On Ditkin sets. Colloquium Mathematicum, Tome 69 (1996) no. 2, pp. 271-274. doi : 10.4064/cm-69-2-271-274. http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-271-274/

Cité par Sources :