Almost Everywhere Convergence of Riesz-Raikov Series
Colloquium Mathematicum, Tome 68 (1995) no. 2, pp. 241-248
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let T be a d×d matrix with integer entries and with eigenvalues >1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series $∑_{n=1}^{∞} c_n f(T^{n}x)$ converges almost everywhere with respect to Lebesgue measure provided that $∑_{n=1}^{∞} |c_n|^2 log^{2}n ∞$.
Keywords:
Riesz-Raikov series, quasi-orthogonality, Bernoulli measures
Affiliations des auteurs :
Ai Fan 1
@article{10_4064_cm_68_2_241_248,
author = {Ai Fan},
title = {Almost {Everywhere} {Convergence} of {Riesz-Raikov} {Series}},
journal = {Colloquium Mathematicum},
pages = {241--248},
publisher = {mathdoc},
volume = {68},
number = {2},
year = {1995},
doi = {10.4064/cm-68-2-241-248},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-68-2-241-248/}
}
TY - JOUR AU - Ai Fan TI - Almost Everywhere Convergence of Riesz-Raikov Series JO - Colloquium Mathematicum PY - 1995 SP - 241 EP - 248 VL - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-68-2-241-248/ DO - 10.4064/cm-68-2-241-248 LA - en ID - 10_4064_cm_68_2_241_248 ER -
Ai Fan. Almost Everywhere Convergence of Riesz-Raikov Series. Colloquium Mathematicum, Tome 68 (1995) no. 2, pp. 241-248. doi: 10.4064/cm-68-2-241-248
Cité par Sources :