Almost Everywhere Convergence of Riesz-Raikov Series
Colloquium Mathematicum, Tome 68 (1995) no. 2, pp. 241-248.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let T be a d×d matrix with integer entries and with eigenvalues >1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series $∑_{n=1}^{∞} c_n f(T^{n}x)$ converges almost everywhere with respect to Lebesgue measure provided that $∑_{n=1}^{∞} |c_n|^2 log^{2}n ∞$.
DOI : 10.4064/cm-68-2-241-248
Keywords: Riesz-Raikov series, quasi-orthogonality, Bernoulli measures

Ai Fan 1

1
@article{10_4064_cm_68_2_241_248,
     author = {Ai Fan},
     title = {Almost {Everywhere} {Convergence} of {Riesz-Raikov} {Series}},
     journal = {Colloquium Mathematicum},
     pages = {241--248},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1995},
     doi = {10.4064/cm-68-2-241-248},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-68-2-241-248/}
}
TY  - JOUR
AU  - Ai Fan
TI  - Almost Everywhere Convergence of Riesz-Raikov Series
JO  - Colloquium Mathematicum
PY  - 1995
SP  - 241
EP  - 248
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-68-2-241-248/
DO  - 10.4064/cm-68-2-241-248
LA  - en
ID  - 10_4064_cm_68_2_241_248
ER  - 
%0 Journal Article
%A Ai Fan
%T Almost Everywhere Convergence of Riesz-Raikov Series
%J Colloquium Mathematicum
%D 1995
%P 241-248
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-68-2-241-248/
%R 10.4064/cm-68-2-241-248
%G en
%F 10_4064_cm_68_2_241_248
Ai Fan. Almost Everywhere Convergence of Riesz-Raikov Series. Colloquium Mathematicum, Tome 68 (1995) no. 2, pp. 241-248. doi : 10.4064/cm-68-2-241-248. http://geodesic.mathdoc.fr/articles/10.4064/cm-68-2-241-248/

Cité par Sources :