The support of a function with thin spectrum
Colloquium Mathematicum, Tome 67 (1994) no. 1, pp. 147-154
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if $E ⊆ Ĝ$ does not contain parallelepipeds of arbitrarily large dimension then for any open, non-empty $S ⊆ G$ there exists a constant c > 0 such that $∥ f1_S ∥_2 ≥ c ∥ f ∥ _2$ for all $f ∈ L^2(G)$ whose Fourier transform is supported on E. In particular, such functions cannot vanish on any open, non-empty subset of G. Examples of sets which do not contain parallelepipeds of arbitrarily large dimension include all Λ(p) sets.
@article{10_4064_cm_67_1_147_154,
author = {Kathryn Hare},
title = {The support of a function with thin spectrum},
journal = {Colloquium Mathematicum},
pages = {147--154},
publisher = {mathdoc},
volume = {67},
number = {1},
year = {1994},
doi = {10.4064/cm-67-1-147-154},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-67-1-147-154/}
}
Kathryn Hare. The support of a function with thin spectrum. Colloquium Mathematicum, Tome 67 (1994) no. 1, pp. 147-154. doi: 10.4064/cm-67-1-147-154
Cité par Sources :