The support of a function with thin spectrum
Colloquium Mathematicum, Tome 67 (1994) no. 1, pp. 147-154.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if $E ⊆ Ĝ$ does not contain parallelepipeds of arbitrarily large dimension then for any open, non-empty $S ⊆ G$ there exists a constant c > 0 such that $∥ f1_S ∥_2 ≥ c ∥ f ∥ _2$ for all $f ∈ L^2(G)$ whose Fourier transform is supported on E. In particular, such functions cannot vanish on any open, non-empty subset of G. Examples of sets which do not contain parallelepipeds of arbitrarily large dimension include all Λ(p) sets.
DOI : 10.4064/cm-67-1-147-154

Kathryn Hare 1

1
@article{10_4064_cm_67_1_147_154,
     author = {Kathryn Hare},
     title = {The support of a function with thin spectrum},
     journal = {Colloquium Mathematicum},
     pages = {147--154},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {1994},
     doi = {10.4064/cm-67-1-147-154},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-67-1-147-154/}
}
TY  - JOUR
AU  - Kathryn Hare
TI  - The support of a function with thin spectrum
JO  - Colloquium Mathematicum
PY  - 1994
SP  - 147
EP  - 154
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-67-1-147-154/
DO  - 10.4064/cm-67-1-147-154
LA  - en
ID  - 10_4064_cm_67_1_147_154
ER  - 
%0 Journal Article
%A Kathryn Hare
%T The support of a function with thin spectrum
%J Colloquium Mathematicum
%D 1994
%P 147-154
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-67-1-147-154/
%R 10.4064/cm-67-1-147-154
%G en
%F 10_4064_cm_67_1_147_154
Kathryn Hare. The support of a function with thin spectrum. Colloquium Mathematicum, Tome 67 (1994) no. 1, pp. 147-154. doi : 10.4064/cm-67-1-147-154. http://geodesic.mathdoc.fr/articles/10.4064/cm-67-1-147-154/

Cité par Sources :