On the disjoint (0,N)-cells property for homogeneous ANR's
Colloquium Mathematicum, Tome 66 (1993) no. 1, pp. 77-84.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A metric space (X,ϱ) satisfies the disjoint (0,n)-cells property provided for each point x ∈ X, any map f of the n-cell $B^{n}$ into X and for each ε > 0 there exist a point y ∈ X and a map $g:B^{n} → X$ such that ϱ(x,y) ε, $\widehat{ϱ}(f,g) ε$ and $y ∉ g(B^{n})$. It is proved that each homogeneous locally compact ANR of dimension >2 has the disjoint (0,2)-cells property. If dimX = n > 0, X has the disjoint (0,n-1)-cells property and X is a locally compact $LC^{n-1}$-space then local homologies satisfy $H_{k}(X,X-x) = 0$ for k n and H_{n}(X,X-x) ≠ 0.
DOI : 10.4064/cm-66-1-77-84
Keywords: generalized manifold, homogeneous space, disjoint cells property, absolute neighborhood retract, $LC^n$-space

Paweł Krupski 1

1
@article{10_4064_cm_66_1_77_84,
     author = {Pawe{\l} Krupski},
     title = {On the disjoint {(0,N)-cells} property for homogeneous {ANR's}},
     journal = {Colloquium Mathematicum},
     pages = {77--84},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {1993},
     doi = {10.4064/cm-66-1-77-84},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-77-84/}
}
TY  - JOUR
AU  - Paweł Krupski
TI  - On the disjoint (0,N)-cells property for homogeneous ANR's
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 77
EP  - 84
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-77-84/
DO  - 10.4064/cm-66-1-77-84
LA  - en
ID  - 10_4064_cm_66_1_77_84
ER  - 
%0 Journal Article
%A Paweł Krupski
%T On the disjoint (0,N)-cells property for homogeneous ANR's
%J Colloquium Mathematicum
%D 1993
%P 77-84
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-77-84/
%R 10.4064/cm-66-1-77-84
%G en
%F 10_4064_cm_66_1_77_84
Paweł Krupski. On the disjoint (0,N)-cells property for homogeneous ANR's. Colloquium Mathematicum, Tome 66 (1993) no. 1, pp. 77-84. doi : 10.4064/cm-66-1-77-84. http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-77-84/

Cité par Sources :