A note on f.p.p. and $f^*.p.p.$
Colloquium Mathematicum, Tome 66 (1993) no. 1, pp. 147-150.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In [3], Kinoshita defined the notion of $f^*.p.p.$ and he proved that each compact AR has $f^*.p.p.$ In [4], Yonezawa gave some examples of not locally connected continua with f.p.p., but without $f^*.p.p.$ In general, for each n=1,2,..., there is an n-dimensional continuum $X_n$ with f.p.p., but without $f^*.p.p.$ such that $X_n$ is locally (n-2)-connected (see [4, Addendum]). In this note, we show that for each n-dimensional continuum X which is locally (n-1)-connected, X has f.p.p. if and only if X has $f^*.p.p.$
DOI : 10.4064/cm-66-1-147-150

Hisao Kato 1

1
@article{10_4064_cm_66_1_147_150,
     author = {Hisao Kato},
     title = {A note on f.p.p. and $f^*.p.p.$},
     journal = {Colloquium Mathematicum},
     pages = {147--150},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {1993},
     doi = {10.4064/cm-66-1-147-150},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-147-150/}
}
TY  - JOUR
AU  - Hisao Kato
TI  - A note on f.p.p. and $f^*.p.p.$
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 147
EP  - 150
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-147-150/
DO  - 10.4064/cm-66-1-147-150
LA  - en
ID  - 10_4064_cm_66_1_147_150
ER  - 
%0 Journal Article
%A Hisao Kato
%T A note on f.p.p. and $f^*.p.p.$
%J Colloquium Mathematicum
%D 1993
%P 147-150
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-147-150/
%R 10.4064/cm-66-1-147-150
%G en
%F 10_4064_cm_66_1_147_150
Hisao Kato. A note on f.p.p. and $f^*.p.p.$. Colloquium Mathematicum, Tome 66 (1993) no. 1, pp. 147-150. doi : 10.4064/cm-66-1-147-150. http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-147-150/

Cité par Sources :