A counterexample in comonotone approximation in $L^p$ space
Colloquium Mathematicum, Tome 64 (1993) no. 2, pp. 265-274.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Refining the idea used in [24] and employing very careful computation, the present paper shows that for 0 p ≤ ∞ and k ≥ 1, there exists a function $f ∈ C_{[-1,1]}^k$, with $f^{(k)}(x)≥ 0$ for x ∈ [0,1] and $f^{(k)}(x) ≤ 0$ for x ∈ [-1,0], such that lim sup_{n→∞} (e_n^{(k)}(f)_p) / (ω_{k+2+[1/p]}(f,n^{-1})_{p}) = + ∞ where $e_n^{(k)}(f)_p$ is the best approximation of degree n to f in $L^p$ by polynomials which are comonotone with f, that is, polynomials P so that $P^{(k)}(x)f^{(k)}(x) ≥ 0$ for all x ∈ [-1,1]. This theorem, which is a particular case of a more general one, gives a complete solution to the converse result in comonotone approximation in $L^p$ space for 1 p ≤ ∞.
DOI : 10.4064/cm-64-2-265-274

Xiang Wu 1 ; Song Zhou 1

1
@article{10_4064_cm_64_2_265_274,
     author = {Xiang Wu and Song Zhou},
     title = {A counterexample in comonotone approximation in $L^p$ space},
     journal = {Colloquium Mathematicum},
     pages = {265--274},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1993},
     doi = {10.4064/cm-64-2-265-274},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-64-2-265-274/}
}
TY  - JOUR
AU  - Xiang Wu
AU  - Song Zhou
TI  - A counterexample in comonotone approximation in $L^p$ space
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 265
EP  - 274
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-64-2-265-274/
DO  - 10.4064/cm-64-2-265-274
LA  - en
ID  - 10_4064_cm_64_2_265_274
ER  - 
%0 Journal Article
%A Xiang Wu
%A Song Zhou
%T A counterexample in comonotone approximation in $L^p$ space
%J Colloquium Mathematicum
%D 1993
%P 265-274
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-64-2-265-274/
%R 10.4064/cm-64-2-265-274
%G en
%F 10_4064_cm_64_2_265_274
Xiang Wu; Song Zhou. A counterexample in comonotone approximation in $L^p$ space. Colloquium Mathematicum, Tome 64 (1993) no. 2, pp. 265-274. doi : 10.4064/cm-64-2-265-274. http://geodesic.mathdoc.fr/articles/10.4064/cm-64-2-265-274/

Cité par Sources :