On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor
Colloquium Mathematicum, Tome 62 (1991) no. 2, pp. 293-297
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For Sasakian manifolds, Matsumoto and Chūman [6] defined the contact Bochner curvature tensor (see also Yano [9]). Hasegawa and Nakane [4] and Ikawa and Kon [5] have studied Sasakian manifolds with vanishing contact Bochner curvature tensor. Such manifolds were studied in the theory of submanifolds by Yano ([9] and [10]). In this paper we define an extended contact Bochner curvature tensor in K-contact Riemannian manifolds and call it the E-contact Bochner curvature tensor. Then we show that a K-contact Riemannian manifold with vanishing E-contact Bochner curvature tensor is a Sasakian manifold.
@article{10_4064_cm_62_2_293_297,
author = {Hiroshi Endo},
title = {On {K-contact} {Riemannian} manifolds with vanishing {E-contact} {Bochner} curvature tensor},
journal = {Colloquium Mathematicum},
pages = {293--297},
publisher = {mathdoc},
volume = {62},
number = {2},
year = {1991},
doi = {10.4064/cm-62-2-293-297},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-62-2-293-297/}
}
TY - JOUR AU - Hiroshi Endo TI - On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor JO - Colloquium Mathematicum PY - 1991 SP - 293 EP - 297 VL - 62 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-62-2-293-297/ DO - 10.4064/cm-62-2-293-297 LA - en ID - 10_4064_cm_62_2_293_297 ER -
%0 Journal Article %A Hiroshi Endo %T On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor %J Colloquium Mathematicum %D 1991 %P 293-297 %V 62 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-62-2-293-297/ %R 10.4064/cm-62-2-293-297 %G en %F 10_4064_cm_62_2_293_297
Hiroshi Endo. On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor. Colloquium Mathematicum, Tome 62 (1991) no. 2, pp. 293-297. doi: 10.4064/cm-62-2-293-297
Cité par Sources :