The number of binomial coefficients in residue classes modulo p and $p^2$.
Colloquium Mathematicum, Tome 60 (1990) no. 1, pp. 275-280
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_cm_60_61_1_275_280,
author = {William A. Webb},
title = {The number of binomial coefficients in residue classes modulo p and $p^2$.},
journal = {Colloquium Mathematicum},
pages = {275--280},
year = {1990},
volume = {60},
number = {1},
doi = {10.4064/cm-60-61-1-275-280},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-60-61-1-275-280/}
}
TY - JOUR AU - William A. Webb TI - The number of binomial coefficients in residue classes modulo p and $p^2$. JO - Colloquium Mathematicum PY - 1990 SP - 275 EP - 280 VL - 60 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-60-61-1-275-280/ DO - 10.4064/cm-60-61-1-275-280 LA - en ID - 10_4064_cm_60_61_1_275_280 ER -
%0 Journal Article %A William A. Webb %T The number of binomial coefficients in residue classes modulo p and $p^2$. %J Colloquium Mathematicum %D 1990 %P 275-280 %V 60 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/cm-60-61-1-275-280/ %R 10.4064/cm-60-61-1-275-280 %G en %F 10_4064_cm_60_61_1_275_280
William A. Webb. The number of binomial coefficients in residue classes modulo p and $p^2$.. Colloquium Mathematicum, Tome 60 (1990) no. 1, pp. 275-280. doi: 10.4064/cm-60-61-1-275-280
Cité par Sources :