Large versus bounded solutions to sublinear elliptic problems
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 1, pp. 69-82.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $L $ be a second order elliptic operator with smooth coefficients defined on a domain $\varOmega \subset \mathbb {R}^d$ (possibly unbounded), $d\geq 3$. We study nonnegative continuous solutions $u$ to the equation $L u(x) - \varphi (x, u(x))=0$ on $\varOmega $, where $\varphi $ is in the Kato class with respect to the first variable and it grows sublinearly with respect to the second variable. Under fairly general assumptions we prove that if there is a bounded nonzero solution then there is no large solution.
DOI : 10.4064/ba8180-12-2018
Keywords: second order elliptic operator smooth coefficients defined domain varomega subset mathbb possibly unbounded geq study nonnegative continuous solutions equation varphi varomega where varphi kato class respect first variable grows sublinearly respect second variable under fairly general assumptions prove there bounded nonzero solution there large solution

Ewa Damek 1 ; Zeineb Ghardallou 2

1 Institute of Mathematics Wrocław University Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
2 Department of Mathematical Analysis and Applications University Tunis El Manar, LR11ES11 2092 El Manar 1, Tunis, Tunisia
@article{10_4064_ba8180_12_2018,
     author = {Ewa Damek and Zeineb Ghardallou},
     title = {Large versus bounded solutions to sublinear elliptic problems},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {69--82},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2019},
     doi = {10.4064/ba8180-12-2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8180-12-2018/}
}
TY  - JOUR
AU  - Ewa Damek
AU  - Zeineb Ghardallou
TI  - Large versus bounded solutions to sublinear elliptic problems
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2019
SP  - 69
EP  - 82
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba8180-12-2018/
DO  - 10.4064/ba8180-12-2018
LA  - en
ID  - 10_4064_ba8180_12_2018
ER  - 
%0 Journal Article
%A Ewa Damek
%A Zeineb Ghardallou
%T Large versus bounded solutions to sublinear elliptic problems
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2019
%P 69-82
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba8180-12-2018/
%R 10.4064/ba8180-12-2018
%G en
%F 10_4064_ba8180_12_2018
Ewa Damek; Zeineb Ghardallou. Large versus bounded solutions to sublinear elliptic problems. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 1, pp. 69-82. doi : 10.4064/ba8180-12-2018. http://geodesic.mathdoc.fr/articles/10.4064/ba8180-12-2018/

Cité par Sources :