Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 1, pp. 53-67.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We provide a description of the integral points on elliptic curves $y^{2}=x(x- 2^{m}) \times (x+p)$, where $p$ and $p+2^{m}$ are primes. In particular, we show that for $m=2$ such a curve has no nontorsion integral point, and for $m=1$ it has at most one such point (with $y \gt 0$). Our proofs rely upon numerical computations and a variety of results on quartic and other diophantine equations, combined with an elementary analysis.
DOI : 10.4064/ba8152-1-2019
Keywords: provide description integral points elliptic curves x times where primes particular curve has nontorsion integral point has point proofs rely numerical computations variety results quartic other diophantine equations combined elementary analysis

Tomasz Jędrzejak 1 ; Małgorzata Wieczorek 1

1 Institute of Mathematics University of Szczecin Wielkopolska 15 70-451 Szczecin, Poland
@article{10_4064_ba8152_1_2019,
     author = {Tomasz J\k{e}drzejak and Ma{\l}gorzata Wieczorek},
     title = {Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {53--67},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2019},
     doi = {10.4064/ba8152-1-2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8152-1-2019/}
}
TY  - JOUR
AU  - Tomasz Jędrzejak
AU  - Małgorzata Wieczorek
TI  - Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2019
SP  - 53
EP  - 67
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba8152-1-2019/
DO  - 10.4064/ba8152-1-2019
LA  - en
ID  - 10_4064_ba8152_1_2019
ER  - 
%0 Journal Article
%A Tomasz Jędrzejak
%A Małgorzata Wieczorek
%T Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2019
%P 53-67
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba8152-1-2019/
%R 10.4064/ba8152-1-2019
%G en
%F 10_4064_ba8152_1_2019
Tomasz Jędrzejak; Małgorzata Wieczorek. Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 1, pp. 53-67. doi : 10.4064/ba8152-1-2019. http://geodesic.mathdoc.fr/articles/10.4064/ba8152-1-2019/

Cité par Sources :