Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Tomasz Jędrzejak 1 ; Małgorzata Wieczorek 1
@article{10_4064_ba8152_1_2019, author = {Tomasz J\k{e}drzejak and Ma{\l}gorzata Wieczorek}, title = {Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, pages = {53--67}, publisher = {mathdoc}, volume = {67}, number = {1}, year = {2019}, doi = {10.4064/ba8152-1-2019}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8152-1-2019/} }
TY - JOUR AU - Tomasz Jędrzejak AU - Małgorzata Wieczorek TI - Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$ JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2019 SP - 53 EP - 67 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba8152-1-2019/ DO - 10.4064/ba8152-1-2019 LA - en ID - 10_4064_ba8152_1_2019 ER -
%0 Journal Article %A Tomasz Jędrzejak %A Małgorzata Wieczorek %T Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$ %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2019 %P 53-67 %V 67 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba8152-1-2019/ %R 10.4064/ba8152-1-2019 %G en %F 10_4064_ba8152_1_2019
Tomasz Jędrzejak; Małgorzata Wieczorek. Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 1, pp. 53-67. doi : 10.4064/ba8152-1-2019. http://geodesic.mathdoc.fr/articles/10.4064/ba8152-1-2019/
Cité par Sources :