Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 1, pp. 53-67
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We provide a description of the integral points on elliptic curves $y^{2}=x(x- 2^{m}) \times (x+p)$, where $p$ and $p+2^{m}$ are primes. In particular, we show that for $m=2$ such a curve has no nontorsion integral point, and for $m=1$ it has at most one such point (with $y \gt 0$). Our proofs rely upon numerical computations and a variety of results on quartic and other diophantine equations, combined with an elementary analysis.
Keywords:
provide description integral points elliptic curves x times where primes particular curve has nontorsion integral point has point proofs rely numerical computations variety results quartic other diophantine equations combined elementary analysis
Affiliations des auteurs :
Tomasz Jędrzejak 1 ; Małgorzata Wieczorek 1
@article{10_4064_ba8152_1_2019,
author = {Tomasz J\k{e}drzejak and Ma{\l}gorzata Wieczorek},
title = {Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {53--67},
publisher = {mathdoc},
volume = {67},
number = {1},
year = {2019},
doi = {10.4064/ba8152-1-2019},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8152-1-2019/}
}
TY - JOUR
AU - Tomasz Jędrzejak
AU - Małgorzata Wieczorek
TI - Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$
JO - Bulletin of the Polish Academy of Sciences. Mathematics
PY - 2019
SP - 53
EP - 67
VL - 67
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/ba8152-1-2019/
DO - 10.4064/ba8152-1-2019
LA - en
ID - 10_4064_ba8152_1_2019
ER -
%0 Journal Article
%A Tomasz Jędrzejak
%A Małgorzata Wieczorek
%T Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2019
%P 53-67
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba8152-1-2019/
%R 10.4064/ba8152-1-2019
%G en
%F 10_4064_ba8152_1_2019
Tomasz Jędrzejak; Małgorzata Wieczorek. Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 1, pp. 53-67. doi: 10.4064/ba8152-1-2019
Cité par Sources :