On the existence of almost disjoint and MAD families without $\mathsf {AC}$
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 2, pp. 101-124.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In set theory without the Axiom of Choice ($\mathsf{AC}$), we investigate the deductive strength and mutual relationships of the following statements: (1) Every infinite set $X$ has an almost disjoint family $\mathcal{A}$ of infinite subsets of $X$ with $|\mathcal{A}|\not\leq\aleph_{0}$. (2) Every infinite set $X$ has an almost disjoint family $\mathcal{A}$ of infinite subsets of $X$ with $|\mathcal{A}| \gt \aleph_{0}$. (3) For every infinite set $X$, every almost disjoint family in $X$ can be extended to a maximal almost disjoint family in $X$. (4) For every infinite set $X$, no infinite maximal almost disjoint family in $X$ has cardinality $\aleph_{0}$. (5) For every infinite set $A$, there is a continuum sized almost disjoint family $\mathcal{A}\subseteq A^{\omega}$. (6) For every free ultrafilter $\mathcal{U}$ on $\omega$ and every infinite set $A$, the ultrapower $A^{\omega}/\mathcal{U}$ has cardinality at least $2^{\aleph_{0}}$.
DOI : 10.4064/ba8148-3-2019
Keywords: set theory without axiom choice mathsf investigate deductive strength mutual relationships following statements every infinite set has almost disjoint family mathcal infinite subsets mathcal leq aleph every infinite set has almost disjoint family mathcal infinite subsets mathcal aleph every infinite set every almost disjoint family extended nbsp maximal almost disjoint family every infinite set infinite maximal almost disjoint family has cardinality nbsp aleph every infinite set there continuum sized almost disjoint family mathcal subseteq omega every ultrafilter mathcal omega every infinite set ultrapower omega mathcal has cardinality least aleph

Eleftherios Tachtsis 1

1 Department of Statistics & Actuarial-Financial Mathematics University of the Aegean Karlovassi 83200, Samos, Greece
@article{10_4064_ba8148_3_2019,
     author = {Eleftherios Tachtsis},
     title = {On the existence of almost disjoint and {MAD} families without $\mathsf {AC}$},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {101--124},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2019},
     doi = {10.4064/ba8148-3-2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8148-3-2019/}
}
TY  - JOUR
AU  - Eleftherios Tachtsis
TI  - On the existence of almost disjoint and MAD families without $\mathsf {AC}$
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2019
SP  - 101
EP  - 124
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba8148-3-2019/
DO  - 10.4064/ba8148-3-2019
LA  - en
ID  - 10_4064_ba8148_3_2019
ER  - 
%0 Journal Article
%A Eleftherios Tachtsis
%T On the existence of almost disjoint and MAD families without $\mathsf {AC}$
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2019
%P 101-124
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba8148-3-2019/
%R 10.4064/ba8148-3-2019
%G en
%F 10_4064_ba8148_3_2019
Eleftherios Tachtsis. On the existence of almost disjoint and MAD families without $\mathsf {AC}$. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 2, pp. 101-124. doi : 10.4064/ba8148-3-2019. http://geodesic.mathdoc.fr/articles/10.4064/ba8148-3-2019/

Cité par Sources :