Uniform continuity and normality of metric spaces in $\mathbf{ZF}$
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 65 (2017) no. 2, pp. 113-124
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathbf{X}=(X,d)$ and $\mathbf{Y}=(Y,\rho )$ be two metric
spaces.
(a) We show in $\mathbf{ZF}$ that:
(i) If $\mathbf{X}$ is separable and $f:\mathbf{X}\rightarrow \mathbf{Y}$
is a continuous function then $f$ is uniformly continuous iff for any $
A,B\subseteq X$ with $d(A,B)=0$, $\rho (f(A),f(B))=0$. But it is relatively
consistent with $\mathbf{ZF}$ that there exist metric spaces $\mathbf{X}$, $
\mathbf{Y}$ and a continuous, non-uniformly continuous function $f:\mathbf{X}
\rightarrow \mathbf{Y}$ such that for any $A,B\subseteq X$ with $d(A,B)=0$, $\rho (f(A),f(B))=0$.
(ii) If $S$ is a dense subset of $\mathbf{X}$, $\mathbf{Y}$ is Cantor
complete and $f:\mathbf{S}\rightarrow \mathbf{Y}$ a uniformly continuous
function, then there is a unique uniformly continuous function $F:\mathbf{X}
\rightarrow \mathbf{Y}$ extending $f$.
But it is relatively consistent with $\mathbf{ZF}$ that there exist a
metric space $\mathbf{X}$, a complete metric space $\mathbf{Y}$, a dense
subset $S$ of $\mathbf{X}$ and a uniformly continuous function $f:\mathbf{S}
\rightarrow \mathbf{Y}$ that does not extend to a uniformly
continuous function on $\mathbf{X}$.
(iii) $\mathbf{X}$ is complete iff for any Cauchy sequences $
(x_{n})_{n\in \mathbb{N}}$ and $(y_{n})_{n\in \mathbb{N}}$ in $\mathbf{X}$, if $\overline{
\{x_{n}:n\in \mathbb{N}\}}\cap \overline{\{y_{n}:n\in \mathbb{N}\}}
=\emptyset $ then $d(\{x_{n}:n\in \mathbb{N}\},\{y_{n}:n\in \mathbb{N}
\}) \gt 0 $.
(b) We show in $\mathbf{ZF}$+$\mathbf{CAC}$ that if $f:\mathbf{X}
\rightarrow \mathbf{Y}$ is a continuous function, then $f$ is uniformly
continuous iff for any $A,B\subseteq X$ with $d(A,B)=0$, $\rho
(f(A),f(B))=0$.
Keywords:
mathbf mathbf rho metric spaces mathbf mathbf separable mathbf rightarrow mathbf continuous function uniformly continuous subseteq rho relatively consistent mathbf there exist metric spaces mathbf mathbf continuous non uniformly continuous function mathbf rightarrow mathbf subseteq rho dense subset mathbf mathbf cantor complete mathbf rightarrow mathbf uniformly continuous function there unique uniformly continuous function mathbf rightarrow mathbf extending relatively consistent mathbf there exist metric space mathbf complete metric space mathbf dense subset mathbf uniformly continuous function mathbf rightarrow mathbf does extend uniformly continuous function mathbf iii mathbf complete cauchy sequences mathbb mathbb mathbf overline mathbb cap overline mathbb emptyset mathbb mathbb mathbf mathbf cac mathbf rightarrow mathbf continuous function uniformly continuous subseteq rho
Affiliations des auteurs :
Kyriakos Keremedis 1
@article{10_4064_ba8122_10_2017,
author = {Kyriakos Keremedis},
title = {Uniform continuity and normality of metric spaces in $\mathbf{ZF}$},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {113--124},
publisher = {mathdoc},
volume = {65},
number = {2},
year = {2017},
doi = {10.4064/ba8122-10-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba8122-10-2017/}
}
TY - JOUR
AU - Kyriakos Keremedis
TI - Uniform continuity and normality of metric spaces in $\mathbf{ZF}$
JO - Bulletin of the Polish Academy of Sciences. Mathematics
PY - 2017
SP - 113
EP - 124
VL - 65
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/ba8122-10-2017/
DO - 10.4064/ba8122-10-2017
LA - en
ID - 10_4064_ba8122_10_2017
ER -
%0 Journal Article
%A Kyriakos Keremedis
%T Uniform continuity and normality of metric spaces in $\mathbf{ZF}$
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2017
%P 113-124
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba8122-10-2017/
%R 10.4064/ba8122-10-2017
%G en
%F 10_4064_ba8122_10_2017
Kyriakos Keremedis. Uniform continuity and normality of metric spaces in $\mathbf{ZF}$. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 65 (2017) no. 2, pp. 113-124. doi: 10.4064/ba8122-10-2017
Cité par Sources :