Combinatorics of Dyadic Intervals: Consistent Colourings
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 2, pp. 101-115.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the problem of consistent and homogeneous colourings for increasing families of dyadic intervals. We determine when this problem can be solved and when it cannot.
DOI : 10.4064/ba62-2-1
Keywords: study problem consistent homogeneous colourings increasing families dyadic intervals determine problem solved cannot

Anna Kamont 1 ; Paul F. X. Müller 2

1 Institute of Mathematics Polish Academy of Sciences Wita Stwosza 57 80-952 Gdańsk, Poland
2 Department of Analysis J. Kepler University A-4040 Linz, Austria
@article{10_4064_ba62_2_1,
     author = {Anna Kamont and Paul F. X. M\"uller},
     title = {Combinatorics of {Dyadic} {Intervals:} {Consistent} {Colourings}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {101--115},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2014},
     doi = {10.4064/ba62-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-1/}
}
TY  - JOUR
AU  - Anna Kamont
AU  - Paul F. X. Müller
TI  - Combinatorics of Dyadic Intervals: Consistent Colourings
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2014
SP  - 101
EP  - 115
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-1/
DO  - 10.4064/ba62-2-1
LA  - en
ID  - 10_4064_ba62_2_1
ER  - 
%0 Journal Article
%A Anna Kamont
%A Paul F. X. Müller
%T Combinatorics of Dyadic Intervals: Consistent Colourings
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2014
%P 101-115
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-1/
%R 10.4064/ba62-2-1
%G en
%F 10_4064_ba62_2_1
Anna Kamont; Paul F. X. Müller. Combinatorics of Dyadic Intervals: Consistent Colourings. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) no. 2, pp. 101-115. doi : 10.4064/ba62-2-1. http://geodesic.mathdoc.fr/articles/10.4064/ba62-2-1/

Cité par Sources :