Optics in Croke–Kleiner Spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 2, pp. 147-165
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We explore the
interior geometry of the CAT(0) spaces $\{ X_{\alpha} : 0 \alpha
\leq {\pi}/{2} \}$, constructed by Croke and Kleiner
[Topology 39 (2000)]. In particular, we describe a diffraction
effect experienced by the family of geodesic rays that emanate
from a basepoint and pass through a certain singular point called
a triple point, and we describe the shadow this family casts on
the boundary. This diffraction effect is codified in the
Transformation Rules stated in Section 3 of this paper. The
Transformation Rules have various applications. The earliest of
these, described in Section 4, establishes a topological invariant
of the boundaries of all the $X_{\alpha}$'s for which $\alpha$
lies in the interval $[{\pi}/{2(n+1)},{\pi}/{2n})$,
where $n$ is a positive integer. Since the invariant changes when
$n$ changes, it provides a partition of the topological types of
the boundaries of Croke–Kleiner spaces into a countable infinity
of distinct classes. This countably infinite partition extends
the original result of Croke and Kleiner which partitioned the
topological types of the Croke–Kleiner boundaries into two
distinct classes. After this countably infinite partition was
proved, a finer partition of the topological types of the
Croke–Kleiner boundaries into uncountably many distinct classes
was established by the second author [J. Group Theory 8
(2005)], together with other applications of the Transformation
Rules.
Keywords:
explore interior geometry cat spaces alpha alpha leq constructed croke kleiner topology particular describe diffraction effect experienced family geodesic rays emanate basepoint pass through certain singular point called triple point describe shadow family casts boundary diffraction effect codified transformation rules stated section paper transformation rules have various applications earliest these described section establishes topological invariant boundaries alpha which alpha lies interval where positive integer since invariant changes changes provides partition topological types boundaries croke kleiner spaces countable infinity distinct classes countably infinite partition extends original result croke kleiner which partitioned topological types croke kleiner boundaries distinct classes after countably infinite partition proved finer partition topological types croke kleiner boundaries uncountably many distinct classes established second author group theory together other applications transformation rules
Affiliations des auteurs :
Fredric D. Ancel 1 ; Julia M. Wilson 2
@article{10_4064_ba58_2_6,
author = {Fredric D. Ancel and Julia M. Wilson},
title = {Optics in {Croke{\textendash}Kleiner} {Spaces}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {147--165},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {2010},
doi = {10.4064/ba58-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba58-2-6/}
}
TY - JOUR AU - Fredric D. Ancel AU - Julia M. Wilson TI - Optics in Croke–Kleiner Spaces JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2010 SP - 147 EP - 165 VL - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba58-2-6/ DO - 10.4064/ba58-2-6 LA - en ID - 10_4064_ba58_2_6 ER -
Fredric D. Ancel; Julia M. Wilson. Optics in Croke–Kleiner Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 2, pp. 147-165. doi: 10.4064/ba58-2-6
Cité par Sources :