Visible Points on Modular Exponential Curves
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 17-22
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We obtain an asymptotic formula for the number of
visible points $(x,y)$, that is, with $\gcd(x,y)=1$,
which lie in
the box $[1,U] \times [1,V]$ and also belong to
the exponential modular curves $y \equiv a g^x \pmod p$.
Among other tools, some recent
results of additive combinatorics due to J. Bourgain and
M. Z. Garaev play a crucial role in our argument.
Keywords:
obtain asymptotic formula number visible points gcd which lie box times belong exponential modular curves equiv pmod among other tools recent results additive combinatorics due nbsp bourgain nbsp nbsp garaev play crucial role argument
Affiliations des auteurs :
Tsz Ho Chan 1 ; Igor E. Shparlinski 2
@article{10_4064_ba58_1_2,
author = {Tsz Ho Chan and Igor E. Shparlinski},
title = {Visible {Points} on {Modular} {Exponential} {Curves}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {17--22},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {2010},
doi = {10.4064/ba58-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-2/}
}
TY - JOUR AU - Tsz Ho Chan AU - Igor E. Shparlinski TI - Visible Points on Modular Exponential Curves JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2010 SP - 17 EP - 22 VL - 58 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-2/ DO - 10.4064/ba58-1-2 LA - en ID - 10_4064_ba58_1_2 ER -
%0 Journal Article %A Tsz Ho Chan %A Igor E. Shparlinski %T Visible Points on Modular Exponential Curves %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2010 %P 17-22 %V 58 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-2/ %R 10.4064/ba58-1-2 %G en %F 10_4064_ba58_1_2
Tsz Ho Chan; Igor E. Shparlinski. Visible Points on Modular Exponential Curves. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 17-22. doi: 10.4064/ba58-1-2
Cité par Sources :