Visible Points on Modular Exponential Curves
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 17-22.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We obtain an asymptotic formula for the number of visible points $(x,y)$, that is, with $\gcd(x,y)=1$, which lie in the box $[1,U] \times [1,V]$ and also belong to the exponential modular curves $y \equiv a g^x \pmod p$. Among other tools, some recent results of additive combinatorics due to J. Bourgain and M. Z. Garaev play a crucial role in our argument.
DOI : 10.4064/ba58-1-2
Keywords: obtain asymptotic formula number visible points gcd which lie box times belong exponential modular curves equiv pmod among other tools recent results additive combinatorics due nbsp bourgain nbsp nbsp garaev play crucial role argument

Tsz Ho Chan 1 ; Igor E. Shparlinski 2

1 Department of Mathematical Sciences University of Memphis Memphis, TN 38152, U.S.A.
2 Department of Computing Macquarie University Sydney, NSW 2109, Australia
@article{10_4064_ba58_1_2,
     author = {Tsz Ho Chan and Igor E. Shparlinski},
     title = {Visible {Points} on {Modular} {Exponential} {Curves}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {17--22},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2010},
     doi = {10.4064/ba58-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-2/}
}
TY  - JOUR
AU  - Tsz Ho Chan
AU  - Igor E. Shparlinski
TI  - Visible Points on Modular Exponential Curves
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2010
SP  - 17
EP  - 22
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-2/
DO  - 10.4064/ba58-1-2
LA  - en
ID  - 10_4064_ba58_1_2
ER  - 
%0 Journal Article
%A Tsz Ho Chan
%A Igor E. Shparlinski
%T Visible Points on Modular Exponential Curves
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2010
%P 17-22
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-2/
%R 10.4064/ba58-1-2
%G en
%F 10_4064_ba58_1_2
Tsz Ho Chan; Igor E. Shparlinski. Visible Points on Modular Exponential Curves. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) no. 1, pp. 17-22. doi : 10.4064/ba58-1-2. http://geodesic.mathdoc.fr/articles/10.4064/ba58-1-2/

Cité par Sources :