On the Extension of Certain Maps with Values in Spheres
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 177-182.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $E$ be an oriented, smooth and closed $m$-dimensional manifold with $m \ge 2$ and $V \subset E$ an oriented, connected, smooth and closed $(m-2)$-dimensional submanifold which is homologous to zero in $E$. Let $S^{n-2} \subset S^n$ be the standard inclusion, where $S^n$ is the $n$-sphere and $n \ge 3$. We prove the following extension result: if $h:V \to S^{n-2}$ is a smooth map, then $h$ extends to a smooth map $g:E \to S^n$ transverse to $S^{n-2}$ and with $g^{-1}(S^{n-2})=V$. Using this result, we give a new and simpler proof of a theorem of Carlos Biasi related to the \it ambiental bordism \rm question, which asks whether, given a smooth closed $n$-dimensional manifold $E$ and a smooth closed $m$-dimensional submanifold $V \subset E$, one can find a compact smooth $(m+1)$-dimensional submanifold $W \subset E$ such that the boundary of $W$ is $V$.
DOI : 10.4064/ba56-2-8
Keywords: oriented smooth closed m dimensional manifold subset oriented connected smooth closed m dimensional submanifold which homologous zero nbsp n subset standard inclusion where n sphere prove following extension result n smooth map extends smooth map transverse n n using result simpler proof theorem carlos biasi related ambiental bordism question which asks whether given smooth closed n dimensional manifold smooth closed m dimensional submanifold subset compact smooth dimensional submanifold subset boundary

Carlos Biasi 1 ; Alice K. M. Libardi 2 ; Pedro L. Q. Pergher 3 ; Stanis/law Spież 4

1 Departamento de Matemática ICMC-USP – Campus de São Carlos Caixa Postal 668 São Carlos, SP 13560-970, Brazil
2 Departamento de Matemática IGCE-UNESP – Campus de Rio Claro Rio Claro, SP 13506-700, Brazil
3 Departamento de Matemática Universidade Federal de São Carlos Caixa Postal 676 São Carlos, SP 13565-905, Brazil
4 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8, P.O. Box 21 00-956 Warszawa, Poland
@article{10_4064_ba56_2_8,
     author = {Carlos Biasi and Alice K. M. Libardi and Pedro L. Q. Pergher and Stanis/law Spie\.z},
     title = {On the {Extension} of {Certain} {Maps} with {Values} in {Spheres}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {177--182},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2008},
     doi = {10.4064/ba56-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-8/}
}
TY  - JOUR
AU  - Carlos Biasi
AU  - Alice K. M. Libardi
AU  - Pedro L. Q. Pergher
AU  - Stanis/law Spież
TI  - On the Extension of Certain Maps with Values in Spheres
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2008
SP  - 177
EP  - 182
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-8/
DO  - 10.4064/ba56-2-8
LA  - en
ID  - 10_4064_ba56_2_8
ER  - 
%0 Journal Article
%A Carlos Biasi
%A Alice K. M. Libardi
%A Pedro L. Q. Pergher
%A Stanis/law Spież
%T On the Extension of Certain Maps with Values in Spheres
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2008
%P 177-182
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-8/
%R 10.4064/ba56-2-8
%G en
%F 10_4064_ba56_2_8
Carlos Biasi; Alice K. M. Libardi; Pedro L. Q. Pergher; Stanis/law Spież. On the Extension of Certain Maps with Values in Spheres. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 177-182. doi : 10.4064/ba56-2-8. http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-8/

Cité par Sources :