On the Extension of Certain Maps with Values in Spheres
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 177-182
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $E$ be an oriented, smooth and closed $m$-dimensional
manifold with $m \ge 2$ and $V \subset E$ an oriented,
connected, smooth and closed $(m-2)$-dimensional submanifold which
is homologous to zero in $E$. Let $S^{n-2} \subset S^n$ be the
standard inclusion, where $S^n$ is the $n$-sphere and $n \ge 3$.
We prove the following extension result: if $h:V \to
S^{n-2}$ is a smooth map, then $h$ extends to a smooth map $g:E
\to S^n$ transverse to $S^{n-2}$ and with $g^{-1}(S^{n-2})=V$.
Using this result, we give a new and simpler proof of a theorem of
Carlos Biasi related to the \it ambiental bordism \rm question,
which asks whether, given a smooth
closed $n$-dimensional manifold $E$ and a smooth
closed $m$-dimensional submanifold $V \subset E$, one can
find a compact smooth
$(m+1)$-dimensional submanifold $W \subset E$ such that the boundary
of $W$ is $V$.
Keywords:
oriented smooth closed m dimensional manifold subset oriented connected smooth closed m dimensional submanifold which homologous zero nbsp n subset standard inclusion where n sphere prove following extension result n smooth map extends smooth map transverse n n using result simpler proof theorem carlos biasi related ambiental bordism question which asks whether given smooth closed n dimensional manifold smooth closed m dimensional submanifold subset compact smooth dimensional submanifold subset boundary
Affiliations des auteurs :
Carlos Biasi 1 ; Alice K. M. Libardi 2 ; Pedro L. Q. Pergher 3 ; Stanis/law Spież 4
@article{10_4064_ba56_2_8,
author = {Carlos Biasi and Alice K. M. Libardi and Pedro L. Q. Pergher and Stanis/law Spie\.z},
title = {On the {Extension} of {Certain} {Maps} with {Values} in {Spheres}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {177--182},
publisher = {mathdoc},
volume = {56},
number = {2},
year = {2008},
doi = {10.4064/ba56-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-8/}
}
TY - JOUR AU - Carlos Biasi AU - Alice K. M. Libardi AU - Pedro L. Q. Pergher AU - Stanis/law Spież TI - On the Extension of Certain Maps with Values in Spheres JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2008 SP - 177 EP - 182 VL - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-8/ DO - 10.4064/ba56-2-8 LA - en ID - 10_4064_ba56_2_8 ER -
%0 Journal Article %A Carlos Biasi %A Alice K. M. Libardi %A Pedro L. Q. Pergher %A Stanis/law Spież %T On the Extension of Certain Maps with Values in Spheres %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2008 %P 177-182 %V 56 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-8/ %R 10.4064/ba56-2-8 %G en %F 10_4064_ba56_2_8
Carlos Biasi; Alice K. M. Libardi; Pedro L. Q. Pergher; Stanis/law Spież. On the Extension of Certain Maps with Values in Spheres. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 177-182. doi: 10.4064/ba56-2-8
Cité par Sources :