Infinite-Dimensionality modulo Absolute Borel Classes
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 163-176
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For each ordinal $1 \leq \alpha \omega_1$ we present separable metrizable spaces $X_\alpha, Y_\alpha$ and $Z_\alpha$ such that(i) ${\rm f}\,X_\alpha$, f $Y_\alpha$, f $Z_\alpha = \omega_0$,
where $\rm f$ is either $\rm trdef$ or ${\cal K}_0\mbox{-trsur}$,(ii) $\mathop{A(\alpha)\mbox{-trind}} X_\alpha = \infty$ and
$\mathop{M(\alpha)\mbox{-trind}} X_\alpha = -1$,(iii) $\mathop{A(\alpha)\mbox{-trind}} Y_\alpha = -1$ and
$\mathop{M(\alpha)\mbox{-trind}} Y_\alpha = \infty$, and
(iv) $\mathop{A(\alpha)\mbox{-trind}} Z_\alpha
= \mathop{M(\alpha)\mbox{-trind}} Z_\alpha = \infty$ and
$A(\alpha+1) \cap \mathop{M(\alpha+1)\mbox{-trind}} Z_\alpha = -1$.We also show that there exists no separable metrizable space $W_\alpha$
with
$A(\alpha)\mbox{-trind}\, W_\alpha \ne \infty$, $\mathop{M(\alpha)\mbox{-trind}}
W_\alpha \ne \infty$ and $A(\alpha) \cap \mathop{M(\alpha)\mbox{-trind}}
W_\alpha = \infty$,
where $A(\alpha)$ (resp. $M(\alpha)$) is the absolutely additive
(resp. multiplicative) Borel class.
Keywords:
each ordinal leq alpha omega present separable metrizable spaces alpha alpha alpha alpha alpha alpha omega where either trdef cal mbox trsur mathop alpha mbox trind alpha infty mathop alpha mbox trind alpha iii mathop alpha mbox trind alpha mathop alpha mbox trind alpha infty mathop alpha mbox trind alpha mathop alpha mbox trind alpha infty alpha cap mathop alpha mbox trind alpha there exists separable metrizable space alpha alpha mbox trind alpha infty mathop alpha mbox trind alpha infty alpha cap mathop alpha mbox trind alpha infty where alpha resp alpha absolutely additive resp multiplicative borel class
Affiliations des auteurs :
Vitalij Chatyrko 1 ; Yasunao Hattori 2
@article{10_4064_ba56_2_7,
author = {Vitalij Chatyrko and Yasunao Hattori},
title = {Infinite-Dimensionality modulo {Absolute} {Borel} {Classes}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {163--176},
publisher = {mathdoc},
volume = {56},
number = {2},
year = {2008},
doi = {10.4064/ba56-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-7/}
}
TY - JOUR AU - Vitalij Chatyrko AU - Yasunao Hattori TI - Infinite-Dimensionality modulo Absolute Borel Classes JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2008 SP - 163 EP - 176 VL - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-7/ DO - 10.4064/ba56-2-7 LA - en ID - 10_4064_ba56_2_7 ER -
%0 Journal Article %A Vitalij Chatyrko %A Yasunao Hattori %T Infinite-Dimensionality modulo Absolute Borel Classes %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2008 %P 163-176 %V 56 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-7/ %R 10.4064/ba56-2-7 %G en %F 10_4064_ba56_2_7
Vitalij Chatyrko; Yasunao Hattori. Infinite-Dimensionality modulo Absolute Borel Classes. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 163-176. doi: 10.4064/ba56-2-7
Cité par Sources :