Measure and Helly's Intersection Theorem for Convex Sets
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 1, pp. 59-65.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\cal F}=\{F_\alpha \}$ be a uniformly bounded collection of compact convex sets in $\mathbb R^n$. Katchalski extended Helly's theorem by proving for finite ${\cal F}$ that $\dim (\bigcap {\cal F})\geq d$, $0\leq d\leq n$, if and only if the intersection of any $f(n,d)$ elements has dimension at least $% d $ where $f(n,0)=n+1=f(n,n)$ and $f(n,d)=\max \{n+1,2n-2d+2\}$ for $1\leq d\leq n-1.$ An equivalent statement of Katchalski's result for finite ${\cal % F}$ is that there exists $\delta >0$ such that the intersection of any $% f(n,d)$ elements of ${\cal F}$ contains a $d$-dimensional ball of measure $% \delta $ where $f(n,0)=n+1=f(n,n)$ and $f(n,d)=\max \{n+1,2n-2d+2\}$ for $% 1\leq d\leq n-1.$ It is proven that this result holds if the word finite is omitted and extends a result of Breen in which $f(n,0)=n+1=f(n,n)$ and $% f(n,d)=2n$ for $1\leq d\leq n-1$. This is applied to give necessary and sufficient conditions for the concepts of “visibility” and “clear visibility” to coincide for continua in $\mathbb R^n$ without any local connectivity conditions.
DOI : 10.4064/ba56-1-7
Keywords: cal alpha uniformly bounded collection compact convex sets mathbb katchalski extended hellys theorem proving finite cal dim bigcap cal geq leq leq only intersection elements has dimension least where max n leq leq n equivalent statement katchalskis result finite cal there exists delta intersection elements cal contains d dimensional ball measure delta where max n leq leq n proven result holds word finite omitted extends result breen which leq leq n applied necessary sufficient conditions concepts visibility clear visibility coincide continua mathbb without local connectivity conditions

N. Stavrakas 1

1 Department of Mathematics University of North Carolina Charlotte, NC 28223, U.S.A.
@article{10_4064_ba56_1_7,
     author = {N. Stavrakas},
     title = {Measure and {Helly's} {Intersection} {Theorem} for {Convex} {Sets}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {59--65},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2008},
     doi = {10.4064/ba56-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba56-1-7/}
}
TY  - JOUR
AU  - N. Stavrakas
TI  - Measure and Helly's Intersection Theorem for Convex Sets
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2008
SP  - 59
EP  - 65
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba56-1-7/
DO  - 10.4064/ba56-1-7
LA  - en
ID  - 10_4064_ba56_1_7
ER  - 
%0 Journal Article
%A N. Stavrakas
%T Measure and Helly's Intersection Theorem for Convex Sets
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2008
%P 59-65
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba56-1-7/
%R 10.4064/ba56-1-7
%G en
%F 10_4064_ba56_1_7
N. Stavrakas. Measure and Helly's Intersection Theorem for Convex Sets. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 1, pp. 59-65. doi : 10.4064/ba56-1-7. http://geodesic.mathdoc.fr/articles/10.4064/ba56-1-7/

Cité par Sources :