Polynomial Imaginary Decompositions for Finite Separable Extensions
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 1, pp. 9-13.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $K$ be a field and let $L=K[\xi]$ be a finite field extension of $K$ of degree $m>1$. If $f\in L[Z]$ is a polynomial, then there exist unique polynomials $u_0,\ldots,u_{m-1}\in K[X_0,\ldots,X_{m-1}]$ such that $f(\sum_{j=0}^{m-1}\xi ^{j}X_{j})=\sum_{j=0}^{m-1}\xi ^{j}u_{j}$. A. Nowicki and S. Spodzieja proved that, if $K$ is a field of characteristic zero and $f\not=0$, then $u_0,\ldots,u_{m-1}$ have no common divisor in $K[X_0,\ldots,X_{m-1}]$ of positive degree. We extend this result to the case when $L$ is a separable extension of a field $K$ of arbitrary characteristic. We also show that the same is true for a formal power series in several variables.
DOI : 10.4064/ba56-1-2
Keywords: field finite field extension degree polynomial there exist unique polynomials ldots m ldots m sum m sum m nowicki spodzieja proved field characteristic zero ldots m have common divisor ldots m positive degree extend result separable extension field arbitrary characteristic formal power series several variables

Adam Grygiel 1

1 Faculty of Mathematics and Computer Science University of /L/od/x Banacha 22 90-238 /L/od/x, Poland
@article{10_4064_ba56_1_2,
     author = {Adam Grygiel},
     title = {Polynomial {Imaginary} {Decompositions} for {Finite} {Separable} {Extensions}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {9--13},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2008},
     doi = {10.4064/ba56-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba56-1-2/}
}
TY  - JOUR
AU  - Adam Grygiel
TI  - Polynomial Imaginary Decompositions for Finite Separable Extensions
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2008
SP  - 9
EP  - 13
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba56-1-2/
DO  - 10.4064/ba56-1-2
LA  - en
ID  - 10_4064_ba56_1_2
ER  - 
%0 Journal Article
%A Adam Grygiel
%T Polynomial Imaginary Decompositions for Finite Separable Extensions
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2008
%P 9-13
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba56-1-2/
%R 10.4064/ba56-1-2
%G en
%F 10_4064_ba56_1_2
Adam Grygiel. Polynomial Imaginary Decompositions for Finite Separable Extensions. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 1, pp. 9-13. doi : 10.4064/ba56-1-2. http://geodesic.mathdoc.fr/articles/10.4064/ba56-1-2/

Cité par Sources :