Polynomial Imaginary Decompositions for Finite Separable Extensions
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 1, pp. 9-13
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $K$ be a field and let $L=K[\xi]$ be a
finite field extension of $K$ of degree $m>1$. If $f\in L[Z]$
is a polynomial, then there exist unique polynomials $u_0,\ldots,u_{m-1}\in K[X_0,\ldots,X_{m-1}]$ such that $f(\sum_{j=0}^{m-1}\xi ^{j}X_{j})=\sum_{j=0}^{m-1}\xi ^{j}u_{j}$.
A. Nowicki and S. Spodzieja proved that, if $K$
is a field of characteristic zero and $f\not=0$, then $u_0,\ldots,u_{m-1}$
have no common divisor in $K[X_0,\ldots,X_{m-1}]$ of positive
degree. We extend this result to the case when
$L$ is a separable extension of a field $K$ of arbitrary
characteristic. We also show that the same is true for a formal
power series in several variables.
Keywords:
field finite field extension degree polynomial there exist unique polynomials ldots m ldots m sum m sum m nowicki spodzieja proved field characteristic zero ldots m have common divisor ldots m positive degree extend result separable extension field arbitrary characteristic formal power series several variables
Affiliations des auteurs :
Adam Grygiel 1
@article{10_4064_ba56_1_2,
author = {Adam Grygiel},
title = {Polynomial {Imaginary} {Decompositions} for {Finite} {Separable} {Extensions}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {9--13},
publisher = {mathdoc},
volume = {56},
number = {1},
year = {2008},
doi = {10.4064/ba56-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba56-1-2/}
}
TY - JOUR AU - Adam Grygiel TI - Polynomial Imaginary Decompositions for Finite Separable Extensions JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2008 SP - 9 EP - 13 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba56-1-2/ DO - 10.4064/ba56-1-2 LA - en ID - 10_4064_ba56_1_2 ER -
%0 Journal Article %A Adam Grygiel %T Polynomial Imaginary Decompositions for Finite Separable Extensions %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2008 %P 9-13 %V 56 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba56-1-2/ %R 10.4064/ba56-1-2 %G en %F 10_4064_ba56_1_2
Adam Grygiel. Polynomial Imaginary Decompositions for Finite Separable Extensions. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 1, pp. 9-13. doi: 10.4064/ba56-1-2
Cité par Sources :