An Application of Skew Product Maps to Markov Chains
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 55 (2007) no. 1, pp. 35-41
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
By using the skew product definition of a Markov chain we obtain the
following results:(a) Every $k$-step Markov chain is a quasi-Markovian process.
(b) Every piecewise linear map with a Markovian partition
defines a Markov
chain for every absolutely continuous invariant measure.(c) Satisfying the Chapman–Kolmogorov equation is not sufficient
for a process to be quasi-Markovian.
Keywords:
using skew product definition markov chain obtain following results every k step markov chain quasi markovian process every piecewise linear map markovian partition defines markov chain every absolutely continuous invariant measure satisfying chapman kolmogorov equation sufficient process quasi markovian
Affiliations des auteurs :
Zbigniew S. Kowalski 1
@article{10_4064_ba55_1_4,
author = {Zbigniew S. Kowalski},
title = {An {Application} of {Skew} {Product} {Maps} to {Markov} {Chains}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {35--41},
publisher = {mathdoc},
volume = {55},
number = {1},
year = {2007},
doi = {10.4064/ba55-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba55-1-4/}
}
TY - JOUR AU - Zbigniew S. Kowalski TI - An Application of Skew Product Maps to Markov Chains JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2007 SP - 35 EP - 41 VL - 55 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba55-1-4/ DO - 10.4064/ba55-1-4 LA - en ID - 10_4064_ba55_1_4 ER -
Zbigniew S. Kowalski. An Application of Skew Product Maps to Markov Chains. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 55 (2007) no. 1, pp. 35-41. doi: 10.4064/ba55-1-4
Cité par Sources :