Fixed Points of $n$-Valued Multimaps of the Circle
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 2, pp. 153-162.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A multifunction $\phi \colon X \multimap Y$ is $n$-valued if $\phi(x)$ is an unordered subset of $n$ points of $Y$ for each $x \in X$. The (continuous) $n$-valued multimaps $\phi \colon S^1 \multimap S^1$ are classified up to homotopy by an integer-valued degree. In the Nielsen fixed point theory of such multimaps, due to Schirmer, the Nielsen number $N(\phi)$ of an $n$-valued $\phi \colon S^1 \multimap S^1$ of degree $d$ equals $|n - d|$ and $\phi$ is homotopic to an $n$-valued power map that has exactly $|n - d|$ fixed points. Thus the Wecken property, that Schirmer established for manifolds of dimension at least three, also holds for the circle. An $n$-valued multimap $\phi \colon S^1 \multimap S^1$ of degree $d$ splits into $n$ selfmaps of $S^1$ if and only if $d$ is a multiple of $n$.
DOI : 10.4064/ba54-2-7
Keywords: multifunction phi colon multimap n valued phi unordered subset points each continuous n valued multimaps phi colon multimap classified homotopy integer valued degree nielsen fixed point theory multimaps due schirmer nielsen number phi n valued phi colon multimap degree equals phi homotopic n valued power map has exactly fixed points wecken property schirmer established manifolds dimension least three holds circle n valued multimap phi colon multimap degree splits selfmaps only multiple nbsp

Robert F. Brown 1

1 Department of Mathematics University of California Los Angeles, CA 90095-1555, U.S.A.
@article{10_4064_ba54_2_7,
     author = {Robert F. Brown},
     title = {Fixed {Points} of $n${-Valued} {Multimaps} of the {Circle}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {153--162},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2006},
     doi = {10.4064/ba54-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-7/}
}
TY  - JOUR
AU  - Robert F. Brown
TI  - Fixed Points of $n$-Valued Multimaps of the Circle
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2006
SP  - 153
EP  - 162
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-7/
DO  - 10.4064/ba54-2-7
LA  - en
ID  - 10_4064_ba54_2_7
ER  - 
%0 Journal Article
%A Robert F. Brown
%T Fixed Points of $n$-Valued Multimaps of the Circle
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2006
%P 153-162
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-7/
%R 10.4064/ba54-2-7
%G en
%F 10_4064_ba54_2_7
Robert F. Brown. Fixed Points of $n$-Valued Multimaps of the Circle. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 2, pp. 153-162. doi : 10.4064/ba54-2-7. http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-7/

Cité par Sources :