Fixed Points of $n$-Valued Multimaps of the Circle
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 2, pp. 153-162
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A multifunction $\phi \colon X \multimap
Y$ is $n$-valued if $\phi(x)$
is an unordered subset of $n$ points of $Y$ for each $x \in X$.
The (continuous) $n$-valued multimaps $\phi \colon S^1
\multimap
S^1$ are classified up to homotopy by an integer-valued
degree. In the Nielsen fixed point theory of such multimaps,
due to Schirmer, the Nielsen number $N(\phi)$ of
an $n$-valued $\phi \colon S^1
\multimap
S^1$ of degree $d$ equals $|n - d|$ and
$\phi$ is homotopic
to an $n$-valued power map that has exactly $|n - d|$ fixed
points. Thus the Wecken property, that Schirmer established for
manifolds of dimension at least three, also holds for the circle.
An $n$-valued multimap $\phi \colon S^1 \multimap
S^1$ of degree
$d$ splits into $n$ selfmaps of $S^1$ if and only if $d$ is a
multiple of $n$.
Keywords:
multifunction phi colon multimap n valued phi unordered subset points each continuous n valued multimaps phi colon multimap classified homotopy integer valued degree nielsen fixed point theory multimaps due schirmer nielsen number phi n valued phi colon multimap degree equals phi homotopic n valued power map has exactly fixed points wecken property schirmer established manifolds dimension least three holds circle n valued multimap phi colon multimap degree splits selfmaps only multiple nbsp
Affiliations des auteurs :
Robert F. Brown 1
@article{10_4064_ba54_2_7,
author = {Robert F. Brown},
title = {Fixed {Points} of $n${-Valued} {Multimaps} of the {Circle}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {153--162},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2006},
doi = {10.4064/ba54-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-7/}
}
TY - JOUR AU - Robert F. Brown TI - Fixed Points of $n$-Valued Multimaps of the Circle JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2006 SP - 153 EP - 162 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-7/ DO - 10.4064/ba54-2-7 LA - en ID - 10_4064_ba54_2_7 ER -
Robert F. Brown. Fixed Points of $n$-Valued Multimaps of the Circle. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 2, pp. 153-162. doi: 10.4064/ba54-2-7
Cité par Sources :