On Probability Distribution Solutions of a Functional Equation
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 4, pp. 389-399.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $0\beta\alpha1$ and let $p\in (0,1)$. We consider the functional equation $$ \varphi(x)=p\varphi \biggl(\frac{x-\beta}{1-\beta}\biggr) +(1-p)\varphi \biggl(\!\min\biggl\{\frac{x}{\alpha}, \frac{x(\alpha-\beta)+\beta(1-\alpha)}{\alpha(1-\beta)}\biggr\}\biggr) $$ and its solutions in two classes of functions, namely $$\eqalign{ {\cal I}=\{\varphi\colon\mathbb R\to\mathbb R\mid \varphi\hbox{ is increasing, } \varphi|_{(-\infty,0]}=0,\,\varphi|_{[1,\infty)}=1\},\cr {\cal C}=\{\varphi\colon\mathbb R\to\mathbb R\mid \varphi\hbox{ is continuous, } \varphi|_{(-\infty,0]}=0,\,\varphi|_{[1,\infty)}=1\}.}$$ We prove that the above equation has at most one solution in $\mathcal C$ and that for some parameters $\alpha,\beta$ and $p$ such a solution exists, and for some it does not. We also determine all solutions of the equation in $\mathcal I$ and we show the exact connection between solutions in both classes.
DOI : 10.4064/ba53-4-4
Keywords: beta alpha consider functional equation varphi varphi biggl frac x beta beta biggr p varphi biggl min biggl frac alpha frac alpha beta beta alpha alpha beta biggr biggr its solutions classes functions namely eqalign cal varphi colon mathbb mathbb mid varphi hbox increasing varphi infty varphi infty cal varphi colon mathbb mathbb mid varphi hbox continuous varphi infty varphi infty prove above equation has solution mathcal parameters alpha beta solution exists does determine solutions equation mathcal exact connection between solutions classes

Janusz Morawiec 1 ; Ludwig Reich 2

1 Institute of Mathematics Silesian University Bankowa 14 PL-40-007 Katowice, Poland
2 Institut für Mathematik Karl Franzens Universität Heinrichstrasse 36 A-8010 Graz, Austria
@article{10_4064_ba53_4_4,
     author = {Janusz Morawiec and Ludwig Reich},
     title = {On {Probability} {Distribution} {Solutions
of} a {Functional} {Equation}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {389--399},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2005},
     doi = {10.4064/ba53-4-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-4/}
}
TY  - JOUR
AU  - Janusz Morawiec
AU  - Ludwig Reich
TI  - On Probability Distribution Solutions
of a Functional Equation
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2005
SP  - 389
EP  - 399
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-4/
DO  - 10.4064/ba53-4-4
LA  - en
ID  - 10_4064_ba53_4_4
ER  - 
%0 Journal Article
%A Janusz Morawiec
%A Ludwig Reich
%T On Probability Distribution Solutions
of a Functional Equation
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2005
%P 389-399
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-4/
%R 10.4064/ba53-4-4
%G en
%F 10_4064_ba53_4_4
Janusz Morawiec; Ludwig Reich. On Probability Distribution Solutions
of a Functional Equation. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 4, pp. 389-399. doi : 10.4064/ba53-4-4. http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-4/

Cité par Sources :