On Probability Distribution Solutions
of a Functional Equation
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 4, pp. 389-399
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $0\beta\alpha1$ and let $p\in (0,1)$. We consider the
functional equation
$$
\varphi(x)=p\varphi \biggl(\frac{x-\beta}{1-\beta}\biggr)
+(1-p)\varphi \biggl(\!\min\biggl\{\frac{x}{\alpha},
\frac{x(\alpha-\beta)+\beta(1-\alpha)}{\alpha(1-\beta)}\biggr\}\biggr)
$$
and its solutions in two classes of functions, namely
$$\eqalign{
{\cal I}=\{\varphi\colon\mathbb R\to\mathbb R\mid
\varphi\hbox{ is increasing, }
\varphi|_{(-\infty,0]}=0,\,\varphi|_{[1,\infty)}=1\},\cr
{\cal C}=\{\varphi\colon\mathbb R\to\mathbb R\mid
\varphi\hbox{ is continuous, }
\varphi|_{(-\infty,0]}=0,\,\varphi|_{[1,\infty)}=1\}.}$$
We prove that the above equation has at
most one solution in $\mathcal C$ and that for some parameters
$\alpha,\beta$ and $p$
such a solution exists, and for some it does not. We
also determine all solutions of the equation in $\mathcal
I$ and we show the exact connection between solutions in both classes.
Keywords:
beta alpha consider functional equation varphi varphi biggl frac x beta beta biggr p varphi biggl min biggl frac alpha frac alpha beta beta alpha alpha beta biggr biggr its solutions classes functions namely eqalign cal varphi colon mathbb mathbb mid varphi hbox increasing varphi infty varphi infty cal varphi colon mathbb mathbb mid varphi hbox continuous varphi infty varphi infty prove above equation has solution mathcal parameters alpha beta solution exists does determine solutions equation mathcal exact connection between solutions classes
Affiliations des auteurs :
Janusz Morawiec 1 ; Ludwig Reich 2
@article{10_4064_ba53_4_4,
author = {Janusz Morawiec and Ludwig Reich},
title = {On {Probability} {Distribution} {Solutions
of} a {Functional} {Equation}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {389--399},
publisher = {mathdoc},
volume = {53},
number = {4},
year = {2005},
doi = {10.4064/ba53-4-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-4/}
}
TY - JOUR AU - Janusz Morawiec AU - Ludwig Reich TI - On Probability Distribution Solutions of a Functional Equation JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2005 SP - 389 EP - 399 VL - 53 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-4/ DO - 10.4064/ba53-4-4 LA - en ID - 10_4064_ba53_4_4 ER -
%0 Journal Article %A Janusz Morawiec %A Ludwig Reich %T On Probability Distribution Solutions of a Functional Equation %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2005 %P 389-399 %V 53 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-4/ %R 10.4064/ba53-4-4 %G en %F 10_4064_ba53_4_4
Janusz Morawiec; Ludwig Reich. On Probability Distribution Solutions of a Functional Equation. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 4, pp. 389-399. doi: 10.4064/ba53-4-4
Cité par Sources :