On the Converse of Caristi's Fixed Point Theorem
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 4, pp. 411-416
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be a nonempty set of cardinality at most $2^{\aleph _0}$ and $T$ be a selfmap of $X$. Our main theorem says that if each periodic point of $T$ is a fixed point under $T$, and $T$ has a fixed point, then there exist a metric $d$ on $X$ and a lower semicontinuous map $\phi :X\to {\mathbb R}_+$ such that $d(x,Tx)\leq \phi (x)-\phi (Tx)$ for all $x\in X$, and $(X,d)$ is separable. Assuming CH (the Continuum Hypothesis), we deduce that $(X,d)$ is compact.
Keywords:
nonempty set cardinality aleph selfmap main theorem says each periodic point fixed point under has fixed point there exist metric lower semicontinuous map phi mathbb leq phi phi separable assuming continuum hypothesis deduce compact
Affiliations des auteurs :
Szymon Głąb 1
@article{10_4064_ba52_4_7,
author = {Szymon G{\l}\k{a}b},
title = {On the {Converse} of {Caristi's} {Fixed} {Point} {Theorem}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {411--416},
publisher = {mathdoc},
volume = {52},
number = {4},
year = {2004},
doi = {10.4064/ba52-4-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba52-4-7/}
}
TY - JOUR AU - Szymon Głąb TI - On the Converse of Caristi's Fixed Point Theorem JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2004 SP - 411 EP - 416 VL - 52 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba52-4-7/ DO - 10.4064/ba52-4-7 LA - en ID - 10_4064_ba52_4_7 ER -
Szymon Głąb. On the Converse of Caristi's Fixed Point Theorem. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 4, pp. 411-416. doi: 10.4064/ba52-4-7
Cité par Sources :