Symplectic structure on colorings, Lagrangian tangles and Tits buildings
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 68 (2020) no. 2, pp. 169-194.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define a symplectic form $\widehat \varphi $ on a free $R$-module $ R^{2n-2}$ associated to $2n$ points on a circle. Using this form, we establish a relation between submodules of $R^{2n-2}$ induced by Fox $R$-colorings of an $n$-tangle and Lagrangians or virtual Lagrangians in the symplectic structure $( R^{2n-2},\widehat \varphi ) $ depending on whether $R$ is a field or a PID. We prove that when $R=\mathbb {Z}_{p}$, $p \gt 2$, all Lagrangians are induced by Fox $R$-colorings of some $n$-tangles and note that for $p=2$ and $n \gt 3$ this is no longer true. For any ring, every $2\pi /n$-rotation of an $n$-tangle yields an isometry of the symplectic space $R^{2n-2}$. We analyze invariant Lagrangian subspaces of this rotation and we partially answer the question whether an operation of rotation (generalized mutation) defined by Anstee et al. (1989) preserves the first homology group of the double branched cover of $S^{3}$ along a given link.
DOI : 10.4064/ba201230-2-3
Keywords: define symplectic form widehat varphi r module n associated points circle using form establish relation between submodules n induced fox r colorings n tangle lagrangians virtual lagrangians symplectic structure n widehat varphi depending whether field pid prove mathbb lagrangians induced fox r colorings n tangles note longer ring every n rotation n tangle yields isometry symplectic space nbsp n analyze invariant lagrangian subspaces rotation partially answer question whether operation rotation generalized mutation defined cite a p r preserves first homology group double branched cover along given link

Jan Dymara 1 ; Tadeusz Januszkiewicz 2 ; Józef H. Przytycki 3

1 Instytut Matematyczny Uniwersytet Wrocławski Wrocław, Poland <a href="https://orcid.org/0000-0002-7127-3298">ORCID: 0000-0002-7127-3298</a>
2 Instytut Matematyczny PAN Warszawa, Poland and Instytut Matematyczny Uniwersytet Wrocławski Wrocław, Poland <a href="https://orcid.org/0000-0002-6570-0281">ORCID: 0000-0002-6570-0281</a>
3 Department of Mathematics The George Washington University Washington, DC, U.S.A. and Institute of Mathematics University of Gdańsk Gdańsk, Poland <a href="https://orcid.org/0000-0002-1600-8889">ORCID: 0000-0002-1600-8889</a>
@article{10_4064_ba201230_2_3,
     author = {Jan Dymara and Tadeusz Januszkiewicz and J\'ozef H. Przytycki},
     title = {Symplectic structure on colorings, {Lagrangian} tangles and {Tits} buildings},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {169--194},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2020},
     doi = {10.4064/ba201230-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba201230-2-3/}
}
TY  - JOUR
AU  - Jan Dymara
AU  - Tadeusz Januszkiewicz
AU  - Józef H. Przytycki
TI  - Symplectic structure on colorings, Lagrangian tangles and Tits buildings
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2020
SP  - 169
EP  - 194
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba201230-2-3/
DO  - 10.4064/ba201230-2-3
LA  - en
ID  - 10_4064_ba201230_2_3
ER  - 
%0 Journal Article
%A Jan Dymara
%A Tadeusz Januszkiewicz
%A Józef H. Przytycki
%T Symplectic structure on colorings, Lagrangian tangles and Tits buildings
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2020
%P 169-194
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba201230-2-3/
%R 10.4064/ba201230-2-3
%G en
%F 10_4064_ba201230_2_3
Jan Dymara; Tadeusz Januszkiewicz; Józef H. Przytycki. Symplectic structure on colorings, Lagrangian tangles and Tits buildings. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 68 (2020) no. 2, pp. 169-194. doi : 10.4064/ba201230-2-3. http://geodesic.mathdoc.fr/articles/10.4064/ba201230-2-3/

Cité par Sources :