On prolongation of connections
Annales Polonici Mathematici, Tome 97 (2010) no. 2, pp. 101-121
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $Y\to M$ be a fibred manifold with $m$-dimensional base and
$n$-dimensional fibres. Let $r, m,n$ be positive integers. We present a construction
$B^r$ of $r$th order holonomic connections $B^r({\mit\Gamma},\nabla):Y\to J^rY$
on $Y\to M$ from general connections ${\mit\Gamma}:Y\to J^1Y$ on $Y\to M$
by means of torsion free
classical linear connections $\nabla$ on $M$.
Then we prove that any construction $B$ of
$r$th order holonomic connections $B({\mit\Gamma},\nabla):Y\to J^rY$ on $Y\to M$ from
general connections ${\mit\Gamma}:Y\to J^1Y$ on $Y\to M$ by means of torsion free
classical linear connections $\nabla$ on $M$ is equal to $B^r$. Applying $B^r$, for
any bundle functor $F:\mathcal F\mathcal M_{m,n}\to\mathcal F\mathcal M$ on fibred $(m,n)$-manifolds we present a
construction $\cal F^r_q$ of $r$th order holonomic connections $\cal
F^r_q({\mit\Theta},\nabla):FY\to J^r(FY)$ on $FY\to M$ from $q$th order holonomic
connections ${\mit\Theta}:Y\to J^qY$ on $Y\to M$ by means of torsion free classical linear
connections $\nabla$ on $M$ (for $q=r=1$ we have a well-known classical construction
$\cal F({\mit\Gamma},\nabla):FY\to J^1(FY)$). Applying $B^r$ we also construct a so-called
$({\mit\Gamma},\nabla)$-lift of a wider class of geometric objects.
In Appendix, we present a direct proof of a (recent) result saying that
for $r\geq 3$ and $m\geq 2$ there is no construction $A$ of $r$th order holonomic
connections $A({\mit\Gamma}):Y\to J^rY$ on $Y\to M$ from general
connections ${\mit\Gamma}:Y\to J^1Y$ on $Y\to M$.
Mots-clés :
fibred manifold m dimensional base n dimensional fibres positive integers present construction rth order holonomic connections mit gamma nabla general connections mit gamma means torsion classical linear connections nabla prove construction rth order holonomic connections mit gamma nabla to general connections mit gamma means torsion classical linear connections nabla equal applying bundle functor mathcal mathcal mathcal mathcal fibred manifolds present construction cal rth order holonomic connections cal mit theta nabla qth order holonomic connections mit theta to means torsion classical linear connections nabla have well known classical construction cal mit gamma nabla applying construct so called mit gamma nabla lift wider class geometric objects appendix present direct proof recent result saying geq geq there construction rth order holonomic connections mit gamma to general connections mit gamma
Affiliations des auteurs :
Włodzimierz M. Mikulski 1
@article{10_4064_ap97_2_1,
author = {W{\l}odzimierz M. Mikulski},
title = {On prolongation of connections},
journal = {Annales Polonici Mathematici},
pages = {101--121},
publisher = {mathdoc},
volume = {97},
number = {2},
year = {2010},
doi = {10.4064/ap97-2-1},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap97-2-1/}
}
Włodzimierz M. Mikulski. On prolongation of connections. Annales Polonici Mathematici, Tome 97 (2010) no. 2, pp. 101-121. doi: 10.4064/ap97-2-1
Cité par Sources :